Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

VOL. 40, No. 3
Delayed Afterdepolarizations in Heart Muscle:
Delayed Afterdepolarizations in Heart Muscle:
Mechanisms and Relevance*[,] † Eisty for Pharmacology and Experimental Therapeutics
 Afterdepolarizations in Heart Mu
 Mechanisms and Relevance*, †

CRAIG T. JANUARY AND HARRY A. FOZZARD‡ **CRAIG T. JANUARY AND HARRY A. FOZZARD:**
 CRAIG T. JANUARY AND HARRY A. FOZZARD:
 Chicago, Chicago, Illinois

CRAIG T. JANUARY AND HARRY A. FOZZARD‡

I. Introduction

I. Introduction
THE CELLULAR MECHANISMS that cause cardiac ar-
ythmias are of immense importance and are the object I. Introduction
THE CELLULAR MECHANISMS that cause cardiac ar-
rhythmias are of immense importance and are the object
of intense investigation. One mechanism postulated to I. Introduction dep

THE CELLULAR MECHANISMS that cause cardiac ar-

rathythmias are of immense importance and are the object

of intense investigation. One mechanism postulated to

cause cardiac arrhythmias, and possibly THE CELLULAR MECHANISMS that cause cardiac arrhythmias are of immense importance and are the object of intense investigation. One mechanism postulated to cause cardiac arrhythmias, and possibly conduction disturbances, is THE CELLULAR MECHANISMS that cause cardiac arriversing and the object
of intense investigation. One mechanism postulated to
cause cardiac arrhythmias, and possibly conduction dis-
turbances, is delayed afterdepolarization rhythmias are of immense importance and are the object
of intense investigation. One mechanism postulated to
cause cardiac arrhythmias, and possibly conduction dis-
turbances, is delayed afterdepolarizations (also called
 of intense investigation. One mechanism postulated to cause cardiac arrhythmias, and possibly conduction disturbances, is delayed afterdepolarizations (also called late afterdepolarizations, oscillatory afterpotentials, o cause cardiac arrhythmias, and possibly conduction disturbances, is delayed afterdepolarizations (also called late afterdepolarizations, oscillatory afterpotentials, or transient depolarizations). These depolarizations ar turbances, is delayed afterdepolarizations (also called late afterdepolarizations, oscillatory afterpotentials, or action
transient depolarizations). These depolarizations are in-
duced by Ca^{2+} overload of the cardiac late afterdepolarizations, oscillatory afterpotentials,
transient depolarizations). These depolarizations are i
duced by Ca^{2+} overload of the cardiac cell. In the la
decade, several review articles have been published transient depolarizations). These depolarizations are in-
duced by Ca^{2+} overload of the cardiac cell. In the last
decade, several review articles have been published on
the subjects of delayed afterdepolarizations and duced by Ca^{2+} overload of the cardiac cell. In the last decade, several review articles have been published on the subjects of delayed afterdepolarizations and of mechanisms of arrhythmias (16, 28, 86). The purpose of decade, several review articles have been published on
the subjects of delayed afterdepolarizations and of mech-
anisms of arrhythmias (16, 28, 86). The purpose of this
review is to summarize recent experimental evidence
 the subjects of delayed afterdepolarizations and of mech-
anisms of arrhythmias (16, 28, 86). The purpose of this
review is to summarize recent experimental evidence
pertinent to the mechanisms responsible for delayed
aft anisms of arrhythmias (16, 28, 86). The
review is to summarize recent experim
pertinent to the mechanisms responsi
afterdepolarizations and their relation
gain insight into their clinical relevance. rtinent to the mechanisms responsible for
erdepolarizations and their relation to Ca²⁺,
in insight into their clinical relevance.
II. Induction of Delayed Afterdepolarizations afterdepolarizations and their relation to Ca^{2+} , and to
gain insight into their clinical relevance.
II. Induction of Delayed Afterdepolarizations
Delayed afterdepolarizations are oscillations of mem-

II. Induction of Delayed Afterdepolarizations $\frac{c}{s}$
Delayed afterdepolarizations are oscillations of membrane voltage that occur after complete repolarization of $\frac{c}{c}$ the cardiac action potential. Hence, they are II. Induction of Delayed Afterdepolarizations
Delayed afterdepolarizations are oscillations of men
brane voltage that occur after complete repolarization
the cardiac action potential. Hence, they are initiate
during electr

branc voltage share occur and recompled repondization of the cardiac action potential. Hence, they are initiated during electrical and mechanical diastole. Delayed after-

* This article is the second of a series of articl ^{*} This article is the second of a series of articles arising from program on Vistas in Pharmacology presented at a joint meeting of the American Society for Pharmacology and Experimental Therapeutiand the American Chemic This article is the second of a series of articles ansing from a
program on Vistas in Pharmacology presented at a joint meeting of the
August 18-22, 1985, in Boston. The program entitled, "The Role of
Calcium in Cardiac Fu American Society for Pharmacology and Experimental Therapeutics (the and the American Chemical Society Division of Medicinal Chemistry, dengthe and prepared to Otto Krayer. The material has been updated by the authors and acknowledged. material has been updated by the authors and prepared for publication
with the assistance of John R. Blinks whose participation is gratefully
acknowledged.

† Supported by National Heart, Lung, and Blood Institute grants

on the cast water of some as shalls whose paradepation is gravitally

the comported by National Heart, Lung, and Blood Institute grants

1: 20592 and HL 31322.
 Address reprint requests to: Harry A. Fozzard, M.D., Box 440

Example of Medicine (Cardiology), The University of Chicago, 1990 and HL 20592 and HL 31322.
 The University of Chicago, 5841

Department of Medicine (Cardiology), The University of Chicago, 5841 P

South Maryland Ave. South Maryland HL 31322.
 HL 20592 and HL 31322.
 Address reprint requests to: Harry 4
 Department of Medicine (Cardiology), The South Maryland Ave., Chicago, IL 60637.

 220

The channel versus exchange pump current 120
 221
 $\frac{1}{224}$

depolarizations are a type of triggered activity. They do

not occur spontaneously in unstimulated preparations;

rather, their induction requires depolarizations are a type of triggered activity. They d
not occur spontaneously in unstimulated preparations
rather, their induction requires an initiating or triggerin depolarizations are a type of triggered activity. They do
not occur spontaneously in unstimulated preparations;
rather, their induction requires an initiating or triggering
event such as one or more action potentials. The depolarizations are a type of triggered activity. They not occur spontaneously in unstimulated preparation rather, their induction requires an initiating or triggerievent such as one or more action potentials. The amplitud depolarizations are a type of triggered activity. They do
not occur spontaneously in unstimulated preparations;
rather, their induction requires an initiating or triggering
event such as one or more action potentials. The not occur spontaneously in unstimulated preparations;
rather, their induction requires an initiating or triggering
event such as one or more action potentials. The ampli-
tude of a delayed afterdepolarization can be subthr rather, their induction requires an initiating or triggering
event such as one or more action potentials. The ampli-
tude of a delayed afterdepolarization can be subthreshold
(i.e., not reaching threshold voltage and initi event such as one or more action potentials. The amplitude of a delayed afterdepolarization can be subthreshold (i.e., not reaching threshold voltage and initiating an action potential), or a delayed afterdepolarization ca tude of a delayed afterdepolarization can be subthreshold
(i.e., not reaching threshold voltage and initiating an
action potential), or a delayed afterdepolarization can
reach threshold voltage and result in an action pote (i.e., not reaching threshold voltage and initiating and action potential), or a delayed afterdepolarization can reach threshold voltage and result in an action potential. When threshold is achieved repetitively, sustained **review).** The produced repetitively, sustained
the can be produced under certain experimental
method is in several cardiac cell types (see ref. 86 for
view).
The prototypical experimental method used to induce
layed afterdepolarizat

and insight into their clinical relevance.
 EXECUTE: The same preparations and under similar experimental

II. Induction of Delayed Afterdepolarizations

Delayed afterdepolarizations are oscillations of mem-

brane volt rhythms can be produced under certain experimental
conditions in several cardiac cell types (see ref. 86 for
review).
The prototypical experimental method used to induce
delayed afterdepolarizations is to expose cardiac ti conditions in several cardiac cell types (see ref. 86 for
review).
The prototypical experimental method used to induce
delayed afterdepolarizations is to expose cardiac tissue
to higher concentrations of cardiac glycosides noticly in the prototypical experimental method used to induce
delayed afterdepolarizations is to expose cardiac tissue
to higher concentrations of cardiac glycosides. This is
not a property of a particular cardiac glycosi The prototypical experimental method used to induc
delayed afterdepolarizations is to expose cardiac tissue
to higher concentrations of cardiac glycosides. This is
not a property of a particular cardiac glycoside, since is delayed afterdepolarizations is to expose cardiac tissue
to higher concentrations of cardiac glycosides. This is
not a property of a particular cardiac glycoside, since in
the same preparations and under similar experiment to higher concentrations of cardiac glycosides. This not a property of a particular cardiac glycoside, since the same preparations and under similar experiment conditions several cardiac glycosides have been shown induce d not a property of a particular cartuac grycoside, since in
the same preparations and under similar experimental
conditions several cardiac glycosides have been shown to
induce delayed afterdepolarizations (39). Cardiac gly conditions several cardiac glycosides have been shown to
induce delayed afterdepolarizations (39). Cardiac glyco-
sides are known to inhibit the Na-K exchange pump,
causing the intracellular Na⁺ activity to rise (18, 51 induce delayed afterdepolarizations (39). Cardiac glycosides are known to inhibit the Na-K exchange pump, causing the intracellular Na⁺ activity to rise (18, 51, 83). Through the Na-Ca exchange mechanism this results in sides are known to inhibit the Na-K exchange pump,
causing the intracellular Na⁺ activity to rise (18, 51, 83).
Through the Na-Ca exchange mechanism this results in
a rise in intracellular Ca²⁺ and the development of causing the intracellular Na⁺ activity to rise (18, 51, 83).
Through the Na-Ca exchange mechanism this results in
a rise in intracellular Ca²⁺ and the development of ten-
sion (51, 74). Consistent with a role for intr Through the Na-Ca exchange mechanism this results in
a rise in intracellular Ca^{2+} and the development of ten-
sion (51, 74). Consistent with a role for intracellular Ca^{2+}
in delayed afterdepolarizations, a transient a rise in intracellular Ca^{2+} and the development o
sion (51, 74). Consistent with a role for intracellula
in delayed afterdepolarizations, a transient contra
(the aftercontraction) can be recorded concomitant
delayed a sion (51, 74). Consistent with a role for intracellular Ca⁻¹
in delayed afterdepolarizations, a transient contraction
(the aftercontraction) can be recorded concomitant with
delayed afterdepolarizations. Delayed afterde (the aftercontraction) can be recorded concomitant with delayed afterdepolarizations. Delayed afterdepolarizations in cardiac cells have been attributed to Ca^{2+} overload, which can then result in a damped oscillatory r delayed alterdepolarizations. Delayed alterdepolarizations in cardiac cells have been attributed to Ca^{2+} over-
load, which can then result in a damped oscillatory
release of Ca^{2+} from internal stores. In agreement w load, which can then result in a damped oscillate release of Ca^{2+} from internal stores. In agreement w this hypothesis, several other interventions that raintracellular Ca^{2+} by different mechanisms also have been sho release of Ca^{2+} from internal stores. In agreement withis hypothesis, several other interventions that raintracellular Ca^{2+} by different mechanisms also have been shown to enhance development of delayed afterd polar this hypothesis, several other interventions that raise
intracellular Ca^{2+} by different mechanisms also have
been shown to enhance development of delayed afterde-
polarizations or the underlying transient inward trans220 **JANUARY AND**
clude lowering or removing $[K]_0$,⁵ lowering $[Na]_0$, raising (4
[Ca]₀, and exposing the tissue to catecholamines. cu 220
 $\begin{aligned}\n\text{clude lowering or removing } [\mathbf{K}]_0, \text{'s lowering } [\mathbf{Na}]\n\text{[Cal]}_0, \text{ and exposing the tissue to catcholamin}\n\end{aligned}$ **III. A Transient Inward Current Causes** JANUARY ANI

lude lowering or removing $[K]_0$,^{\$} lowering $[Na]_0$, raising

Ca $]_0$, and exposing the tissue to cate cholamines.

III. A Transient Inward Current Causes Delayed

After depolarizations and Is Induced by

Nowering or removing $[K]_0$,⁵ lowering $[Na]_0$, raising
and exposing the tissue to cate cholamines.
A **Transient Inward Current Causes Delayed**
A **fterdepolarizations and Is Induced by**
Intracellular Ca²⁺ [Ca]₀, and exposing the tissue to catecholamines.
III. A Transient Inward Current Causes Delayed
Afterdepolarizations and Is Induced by
Intracellular Ca²⁺

Single cells (60, 62), a transient inward current Causes Delayed
 Afterdepolarizations and Is Induced by
 In voltage-clamped cardiac preparations (40, 50) and

single cells (60, 62), a transient inward current ($i_{\$ **Arterdepolarizations and Is Induced by**
 In voltage-clamped cardiac preparations (40, 50) an

single cells (60, 62), a transient inward current (i_{TI}) has

been associated with delayed afterdepolarizations. Sev-

era In voltage-clamped cardiac preparations (40, 50) and
single cells (60, 62), a transient inward current (i_{TI}) has
been associated with delayed afterdepolarizations. Sev-
eral lines of evidence suggest that i_{TI} i In voltage-clamped cardiac preparations (40, 50) and
single cells (60, 62), a transient inward current (i_{TI}) has
been associated with delayed afterdepolarizations. Sev-
eral lines of evidence suggest that i_{TI} is the c single cells (60, 62), a transient inward current (i_{TI}) has
been associated with delayed afterdepolarizations. Sev-
eral lines of evidence suggest that i_{TI} is the current that
underlies delayed afterdepolarizat been associated with delayed afterdepolarizations. S
eral lines of evidence suggest that i_{TI} is the current t
underlies delayed afterdepolarizations and that it
closely linked to a rise in intracellular Ca²⁺. (a) 7
a eral lines of evidence suggest that i_{TI} is the current
underlies delayed afterdepolarizations and that
closely linked to a rise in intracellular Ca^{2+} . (*a*)
appearance of i_{TI} coincides temporally with the dev
men underlies delayed afterdepolarizations and that it is
closely linked to a rise in intracellular Ca^{2+} . (a) The
appearance of i_{TI} coincides temporally with the develop-
ment of delayed afterdepolarizations and afterco closely linked to a rise in intracellular Ca^{2+} . (a) The
appearance of i_{TI} coincides temporally with the develop-
ment of delayed afterdepolarizations and aftercontrac-
tions following exposure to cardiac glycosides, appearance of i_{TI} coincides temporally with the develop-
ment of delayed afterdepolarizations and aftercontrac-
tions following exposure to cardiac glycosides, and they
all appear at similar concentrations. (b) The dep ment of delayed afterdepolarizations and aftercontractions following exposure to cardiac glycosides, and they all appear at similar concentrations. (b) The dependence of delayed afterdepolarizations and i_{TI} on frequ tions following exposure to cardiac glycosides, and they
all appear at similar concentrations. (b) The dependence
of delayed afterdepolarizations and i_{TI} on frequency of
stimulation is similar (50, 81). (c) Ca^{2+} all appear at similar concentrations. (b) The dependence
of delayed afterdepolarizations and i_{TI} on frequency of
stimulation is similar (50, 81). (c) Ca^{2+} overload of heart
cells results in increased spontaneous mem of delayed afterdepolarizations and i_{TI} on frequency of stimulation is similar (50, 81). (c) Ca^{2+} overload of heart cells results in increased spontaneous membrane voltage or current (recorded under voltage clamp stimulation is similar (50, 81). (c) Ca^{2+} overload of heart
cells results in increased spontaneous membrane voltage
or current (recorded under voltage clamp conditions)
moise. Power spectral analysis has shown that the cells results in increased spontaneous membrane voltage
or current (recorded under voltage clamp conditions)
noise. Power spectral analysis has shown that the fre-
quency distribution contained within these voltage or
curr noise. Power spectral analysis has shown that the frequency distribution contained within these voltage or
current signals is similar $(42, 60)$, and that evoking $\frac{1}{11}$ the
results in additional power that contains t quency distribution contained within these voltage or current signals is similar $(42, 60)$, and that evoking i_{TI} results in additional power that contains the same frequency distribution (42) . A similar relationship current signals is similar $(42, 60)$, and that evoking i_{TI}
results in additional power that contains the same fre-
quency distribution (42) . A similar relationship has been
shown between the frequency spectra of spon results in additional power that contains the same frequency distribution (42). A similar relationship has been shown between the frequency spectra of spontaneous membrane current noise and tension fluctuations (42; ur se quency distribution (42). A similar relationship has been
shown between the frequency spectra of spontaneous
membrane current noise and tension fluctuations (42;
see also ref. 10). These and other studies (41) showed
that shown between the frequency spectra of spontaneous
membrane current noise and tension fluctuations (42; und
see also ref. 10). These and other studies (41) showed
that changes in contractile force lagged behind changes
in membrane current noise and tension fluctuations (42;
see also ref. 10). These and other studies (41) showed
that changes in contractile force lagged behind changes
in membrane current in a voltage-dependent manner by
40 t see also ref. 10). These and other studies (41) showed
that changes in contractile force lagged behind changes
in membrane current in a voltage-dependent manner by
40 to 140 ms. (d) An intracellular Ca^{2+} transient has
 that changes in contractile force lagged behind change
in membrane current in a voltage-dependent manner b
40 to 140 ms. (*d*) An intracellular Ca^{2+} transient ha
been associated with delayed afterdepolarizations (84
(in membrane current in a voltage-dependent manner by
40 to 140 ms. (d) An intracellular Ca^{2+} transient has
been associated with delayed afterdepolarizations (84).
(e) Intracellular injection of Ca^{2+} elicits delayed 40 to 140 ms. (d) An intracellular Ca^{2+} trablem associated with delayed afterdepolarization (e) Intracellular injection of Ca^{2+} elicits delapolarizations (60). (f) Modification of in Ca^{2+} by the injection of ethyl been associated with delayed afterdepolarizations (84).

(e) Intracellular injection of Ca²⁺ elicits delayed after-

depolarizations (60). (f) Modification of intracellular

Ca²⁺ by the injection of ethyleneglycol-bis (e) Intracellular injection of Ca²⁺ elicits delayed after-
depolarizations (60). (f) Modification of intracellular
Ca²⁺ by the injection of ethyleneglycol-bis(β -aminoeth-
ylether)-N,N'-tetraacetic acid (EGTA) into depolarizations (60). (*f*) Modification of intracellu Ca²⁺ by the injection of ethyleneglycol-bis(β -aminoe ylether)-N,N'-tetraacetic acid (EGTA) into cells, or the application of caffeine, suppresses both delayed te Ca²⁺ by the injection of ethyleneglycol-bis(β -aminoeth-
ylether)-N,N'-tetraacetic acid (EGTA) into cells, or by
the application of caffeine, suppresses both delayed af-
terdepolarizations and i_{TI} (60; see also ylether)-N,N'-tetraacetic acid (EGTA) into cells, or by
the application of caffeine, suppresses both delayed af-
terdepolarizations and i_{TI} (60; see also ref. 42). Ryano-
dine, which blocks Ca^{2+} release from the sar the application of caffeine, suppresses both delayed at
terdepolarizations and i_{TI} (60; see also ref. 42). Ryano
dine, which blocks Ca^{2+} release from the sarcoplasmi
reticulum (SR), has been shown to suppress delaye terdepolarizations and i_{TI} (60; see also ref. 42). Ryano-
dine, which blocks Ca^{2+} release from the sarcoplasmic
reticulum (SR), has been shown to suppress delayed
afterdepolarizations or i_{TI} and the associated Ca dine, which blocks Ca^{2+} release from the sarcoplasmic the reticulum (SR), has been shown to suppress delayed necter-
afterdepolarizations or i_{TI} and the associated Ca^{2+} transient (59, 76, 79). Recently, it was sh reticulum (SR), has been shown to suppress delayed networks after
depolarizations or i_{TI} and the associated Ca²⁺ tran-
sient (59, 76, 79). Recently, it was shown that, when 1,2-
methods (2-aminophenoxy)ethane-N,N,N', afterdepolarizations or i_{TI} and the associated Ca²⁺
sient (59, 76, 79). Recently, it was shown that, whe
bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic
(BAPTA), a potent chelator of Ca²⁺, was diffused
cardiac tiss sient (59, 76, 79). Recently, it was shown that, when 1,2-
bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid age
(BAPTA), a potent chelator of Ca^{2+} , was diffused into spocardiac tissue, it also abolished delayed aft bis(2-aminophenoxy)ethano(BAPTA), a potent chelato
cardiac tissue, it also abolis
tions, the associated oscillat
the aftercontraction (59).
IV Calcium Release cardiac tissue, it also abolished delayed afterdepolarizations, the associated oscillation in intracellular Ca^{2+} , and the aftercontraction (59).
IV. Calcium Release by the Sarcoplasmic

Reticulum

The SR of striated muscle is the major storage site for
 $\frac{1}{2}$ The SR of striated muscle is the major storage site for
 $\frac{1}{2}$ Ca²⁺ that is released to produce normal contraction contraction IV. Calcium Release by the Sarcoplasmic
Reticulum
The SR of striated muscle is the major storage site for
the Ca²⁺ that is released to produce normal contraction
§ Abbreviations used are: [K]₀, [Na]₀, and [Ca]₀, e The SR of striated muscle is the major storage site for
e Ca²⁺ that is released to produce normal contraction
§ Abbreviations used are: [K]₀, [Na]₀, and [Ca]₀, extracellular K, Na,
d Ca concentrations, respectively

[Ca]₀, and exposing the tissue to catecholamines. current. Ca²⁺ for contraction is then released by the SR,
 III. A Transient Inward Current Causes Delayed and it diffuses to the myofibrils. Binding to troponin C
 (44). First, the action potential activates a small Ca^{2+} current. Ca^{2+} for contraction is then released by the SR, FOZZARD
(44). First, the action potential activates a small Ca^{2+}
current. Ca^{2+} for contraction is then released by the SR,
and it diffuses to the myofibrils. Binding to troponin C and it diffuses to the myofibrils. Binding to translation is the myofibrils. Binding to troponin C initiates cell shortening or force development through (44). First, the action potential activates a small Ca^{2+} current. Ca^{2+} for contraction is then released by the SR, and it diffuses to the myofibrils. Binding to troponin C initiates cell shortening or force developm (44). First, the action potential activates a small Ca^{2+}
current. Ca^{2+} for contraction is then released by the SR,
and it diffuses to the myofibrils. Binding to troponin C
initiates cell shortening or force developm current. Ca^{2+} for contraction is then released by the SI
and it diffuses to the myofibrils. Binding to troponin
initiates cell shortening or force development throug
interaction of actin and myosin filaments. The relea and it diffuses to the myofibrils. Binding to troponinitiates cell shortening or force development throutinteraction of actin and myosin filaments. The relea Ca^{2+} is then pumped back into the SR by an A⁷ dependent Ca tion. teraction of actin and myosin filaments. The released a^{2+} is then pumped back into the SR by an ATP-
pendent Ca^{2+} pump and stored for the next contrac-
on.
The Ca^{2+} uptake phase of SR function has been well
udie

 Ca^{2+} is then pumped back into the SR by an ATP-
dependent Ca^{2+} pump and stored for the next contrac-
tion.
The Ca^{2+} uptake phase of SR function has been well
studied. The primary amino acid sequence of the Ca^{2+} dependent Ca^{2+} pump and stored for the next control tion.
The Ca^{2+} uptake phase of SR function has been vestudied. The primary amino acid sequence of the C pump has been determined, and much of its 3-dimensional str tion.

The Ca²⁺ uptake phase of SR function has been well

studied. The primary amino acid sequence of the Ca²⁺

pump has been determined, and much of its 3-dimen-

sional structure deduced. However, the Ca²⁺ releas The Ca²⁺ uptake phase of SR function has been well studied. The primary amino acid sequence of the Ca²⁺ pump has been determined, and much of its 3-dimensional structure deduced. However, the Ca²⁺ release phase of S studied. The primary amino acid sequence of the Ca^{2+}
pump has been determined, and much of its 3-dimen-
sional structure deduced. However, the Ca^{2+} release
phase of SR function is less well understood. The major
hyp pump has been determined, and much of its 3-dimensional structure deduced. However, the Ca^{2+} release phase of SR function is less well understood. The major hypothesis to explain Ca^{2+} release from cardiac SR is that sional structure deduced. However, the Ca²⁺ release
phase of SR function is less well understood. The major
hypothesis to explain Ca²⁺ release from cardiac SR is
that release is triggered by an increase in cytoplasmic phase of SR function is less well understood. The major
hypothesis to explain Ca^{2+} release from cardiac SR is
that release is triggered by an increase in cytoplasmic
 Ca^{2+} (25-27; see also ref. 4). According to this hypothesis to explain Ca^{2+} release from cardiac SR is
that release is triggered by an increase in cytoplasmic
 Ca^{2+} (25–27; see also ref. 4). According to this concept,
transsarcolemmal Ca^{2+} current increases Ca^{2 that release is triggered by an increase in cytoplasmic Ca^{2+} (25-27; see also ref. 4). According to this concept, transsarcolemmal Ca^{2+} current increases Ca^{2+} in the vicinity of the SR, causing it to release its Ca^{2+} (25-27; see also ref. 4). According to this concept,
transsarcolemmal Ca^{2+} current increases Ca^{2+} in the
vicinity of the SR, causing it to release its store. With
an action potential as trigger, release of S transsarcolemmal Ca²⁺ current increases Ca²⁺ in the vicinity of the SR, causing it to release its store. With an action potential as trigger, release of SR-stored Ca²⁺ under normal conditions is complete and is suff vicinity of the SR, causing it to release its store. With
an action potential as trigger, release of SR-stored Ca²⁺
under normal conditions is complete and is sufficient for
a contraction that is 10 to 20% of maximum. A an action potential as trigger, release of SR-stored Ca^{2+}
under normal conditions is complete and is sufficient for
a contraction that is 10 to 20% of maximum. Additional
 Ca^{2+} loading of the cell, and consequently o under normal conditions is complete and is sufficient for
a contraction that is 10 to 20% of maximum. Additional
Ca²⁺ loading of the cell, and consequently of the SR, can
therefore result in a 5- to 10-fold increase in a contraction that is 10 to 20% of maximum. Additional Ca^{2+} loading of the cell, and consequently of the SR, can therefore result in a 5- to 10-fold increase in contraction strength. Partial release of Ca^{2+} stored i Ca^{2+} loading of the cell, and consequently of the SR, can
therefore result in a 5- to 10-fold increase in contraction
strength. Partial release of Ca^{2+} stored in the SR can be
obtained experimentally, and this may o therefore result in a 5- to 10-fold increase in contraction
strength. Partial release of Ca^{2+} stored in the SR can be
obtained experimentally, and this may occur naturally
under unusual circumstances. The mechanism of strength. Partial release of Ca^{2+} stored in the SR can be obtained experimentally, and this may occur naturally under unusual circumstances. The mechanism of Ca^{2+} -triggered release is not well understood, but there obtained experimentally, and this may occurred under unusual circumstances. The mechanitriggered release is not well understood, because the SR of cardiac muscular Ca²⁺ channels that are gated by Ca²⁺ (72). The cytopl der unusual circumstances. The mechanism of Ca^{2+} -
ggered release is not well understood, but there is
cent evidence that the SR of cardiac muscle contains
 a^{2+} channels that are gated by Ca^{2+} (72).
The cytoplasmi

triggered release is not well understood, but there is
recent evidence that the SR of cardiac muscle contains
 Ca^{2+} channels that are gated by Ca^{2+} (72).
The cytoplasmic Ca^{2+} level itself is established by a
compl recent evidence that the SR of cardiac muscle contains Ca^{2+} channels that are gated by Ca^{2+} (72).
The cytoplasmic Ca^{2+} level itself is established by a complex interaction between sarcolemmal influx through Ca^{2+ Ca^{2+} channels that are gated by Ca^{2+} (72).
The cytoplasmic Ca^{2+} level itself is established by a complex interaction between sarcolemmal influx through Ca^{2+} channels and perhaps Na-Ca exchange, efflux through The cytoplasmic Ca^{2+} level itself is established by a complex interaction between sarcolemmal influx through Ca^{2+} channels and perhaps Na-Ca exchange, efflux through Na-Ca exchange and the sarcolemmal Ca^{2+} pump, complex interaction between sarcolemmal influx through Ca^{2+} channels and perhaps Na-Ca exchange, efflux through Na-Ca exchange and the sarcolemmal Ca^{2+} pump, intracellular sequestration in the SR and perhaps in orga Ca^{2+} channels and perhaps Na-Ca exchange, efflux
through Na-Ca exchange and the sarcolemmal Ca^{2+}
pump, intracellular sequestration in the SR and perhaps
in organelles such as mitochondria, and binding to tro-
ponin through Na-Ca exchange and the sarcolemmal Ca^{2+}
pump, intracellular sequestration in the SR and perhaps
in organelles such as mitochondria, and binding to tro-
ponin C and perhaps to other cytoplasmic molecules.
When t in organelles such as mitochondria, and binding to tro-
ponin C and perhaps to other cytoplasmic molecules.
When the resting myocardial cell is overloaded with Ca^{2+} ,
the SR cannot maintain its increased store, and spon in organelles such as mitochondria, and binding to tro-
ponin C and perhaps to other cytoplasmic molecules.
When the resting myocardial cell is overloaded with Ca^{2+} ,
the SR cannot maintain its increased store, and spon ponin C and perhaps to other cytoplasmic molecules.
When the resting myocardial cell is overloaded with Ca²⁺,
the SR cannot maintain its increased store, and sponta-
neous release can be seen, even in quiescent cells (1, 49, 85). Spontaneous fluctuations can then occur in the membrane potential, the membrane current under volt-
age clamp, and contractions (42). The relation between the SR cannot maintain its increased store, and spontaneous release can be seen, even in quiescent cells $(1, 23, 49, 85)$. Spontaneous fluctuations can then occur in the membrane potential, the membrane current under vol neous release can be seen, even in quiescent cells $(1, 23, 49, 85)$. Spontaneous fluctuations can then occur in the membrane potential, the membrane current under voltage clamp, and contractions (42) . The relation betw 49, 85). Spontaneous fluctuations can then occur in the membrane potential, the membrane current under voltage clamp, and contractions (42). The relation between spontaneous or cyclical Ca^{2+} release and the Ca^{2+} tra membrane potential, the membrane current under volt-
age clamp, and contractions (42). The relation between
spontaneous or cyclical Ca^{2+} release and the Ca^{2+} tran-
sient producing the afterdepolarization is proposed age clamp, and contractions (42). The relation between
spontaneous or cyclical Ca²⁺ release and the Ca²⁺ tran-
sient producing the afterdepolarization is proposed to be
the following. If the cell is stimulated to have spontaneous or cyclical Ca^{2+} release and the Ca^{2+} transient producing the afterdepolarization is proposed to be the following. If the cell is stimulated to have action potentials and contractions, the SR releases it sient producing the afterdepolarization is proposed to be
the following. If the cell is stimulated to have action
potentials and contractions, the SR releases its Ca^{2+}
synchronously, and it reaccumulates Ca^{2+} in a s the following. If the cell is stimulated to have action
potentials and contractions, the SR releases its Ca^{2+}
synchronously, and it reaccumulates Ca^{2+} in a similarly potentials and contractions, the SR releases its Ca^{2+}
synchronously, and it reaccumulates Ca^{2+} in a similarly
synchronous fashion. When overfilled with Ca^{2+} , the SR
can then spontaneously release Ca^{2+} again. T synchronously, and it reaccumulates Ca^{2+} in a similarly
synchronous fashion. When overfilled with Ca^{2+} , the SR
can then spontaneously release Ca^{2+} again. This spon-
taneous release and reaccumulation may occur fo can then spontaneously release Ca^{2+} again. This spontaneous release and reaccumulation may occur for 2 or 3 cycles, until Ca^{2+} reassumes steady-state conditions or release becomes asynchronous. The rise in Ca^{2+} t taneous release and reaccumulation may occur for 2 or 3 cycles, until Ca²⁺ reassumes steady-state conditions or release becomes asynchronous. The rise in Ca²⁺ tempo-
rally correlates with the aftercontraction that character-
izes the Ca²⁺-overloaded state (66, 84).
The m cles, until Ca²⁺ reassumes steady-state conditions or lease becomes asynchronous. The rise in Ca²⁺ tempo-
lly correlates with the aftercontraction that character-
s the Ca²⁺-overloaded state (66, 84).
The mechanism release becomes asynchronous. The rise in Ca^{2+} temporally correlates with the aftercontraction that character-
izes the Ca^{2+} -overloaded state (66, 84).
The mechanism of this spontaneous release in Ca^{2+} -
overloade

PHARMACOLOGICAL REVIEW

The SR of striated muscle is the major storage site for
the Ca^{2+} that is released to produce normal contraction
§ Abbreviations used are: $[K]_0$, $[Na]_0$, and $[Ca]_0$, extracellular K, Na,
and Ca concentrations, respec the Ca²⁺ that is released to produce normal contraction
§ Abbreviations used are: [K]₀, [Na]₀, and [Ca]₀, extracellular K, Na,
and Ca concentrations, respectively; i_{Tr} , transient inward current;
EGTA, ethylen § Abbreviations used are: $[K]_0$, $[Na]_0$, and $[Ca]_0$, extracellular K, Na, and Ca concentrations, respectively; i_{TI} , transient inward current; EGTA, ethyleneglycol-bis(β -aminoethylether)-N,N'-tetraacetic acid; aminophenoxy associated. The expectively, and Canconductations, respectively, i_{H} , transient inward current expectively is the experiment of the experiment of the experiment of the experiment of the saminophenoxy)eth xlammonium; TRIS, Terycourive, Tris, Trischensen, TRIS, Tris(hydroxymethyletheninophenoxy)ethane-N,N,N',N'-tetraacetic
saminophenoxy)ethane-N,N,N',N'-tetraacetic
ylammonium; TRIS, Tris(hydroxymethyl)am

DELAYED AFTERDEPOLARI
"breakdown" of the membrane, backward transport
through the Ca²⁺ pump, or opening of the SR Ca²⁺ **DELAYED AFTERDEPOLARIZ.**

"breakdown" of the membrane, backward transport

through the Ca^{2+} pump, or opening of the SR Ca^{2+}

channels. The most likely mechanism would seem to be "breakdown" of the membrane, backward transport ity
through the Ca²⁺ pump, or opening of the SR Ca²⁺ age
channels. The most likely mechanism would seem to be on
opening of SR Ca²⁺ channels. It also has been shown ne "breakdown" of the membrane, backward transport ithrough the Ca²⁺ pump, or opening of the SR Ca²⁺ a channels. The most likely mechanism would seem to be opening of SR Ca²⁺ channels. It also has been shown rethat inc through the Ca²⁺ pump, or opening of the SR Ca²⁺ age channels. The most likely mechanism would seem to be or opening of SR Ca²⁺ channels. It also has been shown nethat increasing cytoplasmic Ca²⁺ in "skinned" card channels. The most likely mechanism would seem to be opening of SR Ca^{2+} channels. It also has been shown that increasing cytoplasmic Ca^{2+} in "skinned" cardiac cells (25) can produce cyclical Ca^{2+} release from SR. opening of SR Ca^{2+} channels. It also has been shown that increasing cytoplasmic Ca^{2+} in "skinned" cardiac (cells (25) can produce cyclical Ca^{2+} release from SR. The increase of spontaneous release and reaccumulat that increasing cytoplasmic Ca^{2+} in "skinned" cardiac (2
cells (25) can produce cyclical Ca^{2+} release from SR. The
presence of spontaneous release and reaccumulation that by
can be seen in isolated SR or in skinned cells (25) can produce cyclical Ca^{2+} release from SR. The interest presence of spontaneous release and reaccumulation that can be seen in isolated SR or in skinned cells is evidence that sarcolemmal current is not requ presence of spontaneous release and reaccumulation that b:

can be seen in isolated SR or in skinned cells is evidence

that sarcolemmal current is not required to trigger the

cyclical events, although Lin et al. (54) an can be seen in isolated SR or in skinned cells is evidence
that sarcolemmal current is not required to trigger the
cyclical events, although Lin et al. (54) and Boyette et
al. (5) have reported a complex relationship

Current V. The Charge-carrying Mechanism for i_{TI} ,
Membrane Channel versus Exchange Pump
Current
The cellular basis for i_{TI} has remained controversial
d two different charge-carrying mechanisms for i_{TI} and

and two different charge-carrying mechanism for 1_{TI} (see
and two different charge-carrying mechanisms for 1_{TI} are
presently hypothesized. One hypothesis (41-43) favors a
nonselective cation membrane channel with i **EXECUTE CONSERVABLE CONTINUIST THE CONSERVANCE CONTINUIST AND ABOVE THE PRESENT PRESENTLY INTEREST AND APPRESENT CONSERVATOR CONSERVATOR CONSERVATOR CONSERVATOR CONSERVATOR AND ANCE PER UNIT CAPT.** Under conduction and a The cellular basis for i_{TI} has remained controversial,
and two different charge-carrying mechanisms for i_{TI} are
presently hypothesized. One hypothesis (41–43) favors a
anonselective cation membrane channel with its and two different charge-carrying mechanisms for i_{TI} are
presently hypothesized. One hypothesis (41–43) favors a
nonselective cation membrane channel with its conduct-
ance regulated by intracellular Ca^{2+} . Under con presently hypothesized. One hypothesis $(41-43)$ favors a
nonselective cation membrane channel with its conduct-
ance regulated by intracellular Ca^{2+} . Under conditions of
 Ca^{2+} overload, there could occur a cyclical nonselective cation membrane channel with its conduct-
ance regulated by intracellular Ca^{2+} . Under conditions of
 Ca^{2+} overload, there could occur a cyclical release of Ca^{2+}
from the SR (synchronized by the action Ca^{2+} overload, there could occur a cyclical release of Ca^{2+} from the SR (synchronized by the action potential or its repolarization), and this results in a transient increase in the nonselective cation-permeable cha from the SR (synchronized by the action potential or its Ca overload, there collu occur a cyclical release of Ca

from the SR (synchronized by the action potential or its

repolarization), and this results in a transient increase

in the nonselective cation-permeable channel co repolarization), and this results in a transient increase
in the nonselective cation-permeable channel conduct-
ance, in parallel with activation of the aftercontraction.
In voltage-clamped cardiac Purkinje fibers, Tsien in the nonselective cation-permeable channel conduct-
ance, in parallel with activation of the aftercontraction.
In voltage-clamped cardiac Purkinje fibers, Tsien and
his colleagues (43) found the reversal potential for ance, in parallel with activation of the aftercontraction.
In voltage-clamped cardiac Purkinje fibers, Tsien and
his colleagues (43) found the reversal potential for i_{T1} to
be approximately -5 mV in normal Tyrode's In voltage-clamped cardiac Purkinje fibers, Tsien and
his colleagues (43) found the reversal potential for i_{TI} to
be approximately -5 mV in normal Tyrode's solution.
In those experiments, the identification of i_{TI} his colleagues (43) found the reversal potential for i_{TI} to
be approximately -5 mV in normal Tyrode's solution.
In those experiments, the identification of i_{TI} as a Ca^{2+} -
activated current was supported by the In those experiments, the identification of i_{TI} as a Ca²⁺-
activated current was supported by the simultaneous
recording of aftercontractions. Evidence that the current
resulted from the Ca²⁺ release, rather than v In those experiments, the identification of i_{TI} as a Ca²⁺-
activated current was supported by the simultaneous
recording of aftercontractions. Evidence that the current
resulted from the Ca²⁺ release, rather than v activated current was supported by the simultaneo
recording of aftercontractions. Evidence that the curre
resulted from the Ca^{2+} release, rather than vice vers
included the presence of aftercontractions near the r
vers recording of aftercontractions. Evidence that the current
resulted from the Ca^{2+} release, rather than vice versa,
included the presence of aftercontractions near the re-
versal potential of i_{TI} . The reversal pote resulted from the Ca²⁺ release, rather than vice versa
included the presence of aftercontractions near the re
versal potential of i_{TI} . The reversal potential was sensitive to withdrawal of Na⁺ from the bath (becomi included the presence of aftercontractions near the reversal potential of i_{TI} . The reversal potential was sensitive to withdrawal of Na⁺ from the bath (becoming about -35 mV), but it was insensitive to replaceme versal potential of i_{TI} . The reversal potential was set
ive to withdrawal of Na⁺ from the bath (becoming ab
-35 mV), but it was insensitive to replacement of cl
ride by an impermeant anion. Although changes in
revers tive to withdrawal of Na⁺ from the bath (becoming ab -35 mV), but it was insensitive to replacement of ch
ride by an impermeant anion. Although changes in
reversal potential with small manipulations of extrac
lular K -35 mV), but it was insensitive to replacement of chlo-
ride by an impermeant anion. Although changes in the
reversal potential with small manipulations of extracel-
lular K⁺ (1 to 8 mM) could not be shown, a K⁺ perme ride by an impermeant anion. Although changes in the versal potential with small manipulations of extracel-
lular K^+ (1 to 8 mM) could not be shown, a K^+ permeation bility (approximately equal to that of Na⁺) was reversal potential with small manipulations of extracel-
lular K^+ (1 to 8 mM) could not be shown, a K^+ permea-
bility (approximately equal to that of Na^+) was required
to account for the value of the reversal pote lular K⁺ (1 to 8 mM) could not be shown, a K⁺ permeability (approximately equal to that of Na⁺) was required account for the value of the reversal potential in 69).
normal Tyrode's solution (assuming that the only c bility (approximately equal to that of Na⁺) was required
to account for the value of the reversal potential in
normal Tyrode's solution (assuming that the only cur-
rent flow was through the i_{TI} channel). Permeabilit to account for the value of the reversal potential in 69). The initiating sequence for the delayed afterdepo-
normal Tyrode's solution (assuming that the only cur-
rent flow was through the i_{TI} channel). Permeability t normal Tyrode's solution (assuming that the only
rent flow was through the i_{TI} channel). Permeabili
Ca²⁺ also was suggested because the reversal pote
remained well positive to the K⁺ reversal potential is
absence o rent flow was through the i_{TI} channel). Permeability to Ca^{2+} also was suggested because the reversal potential remained well positive to the K⁺ reversal potential in the absence of Na⁺ (see also ref. 10). The sim Ca^{2+} also was suggested because the reversal potential remained well positive to the K⁺ reversal potential in the absence of Na⁺ (see also ref. 10). The simplest explanation for these data, based primarily on the i remained well positive to the K^+ reversal potential in
absence of Na^+ (see also ref. 10). The simplest expli
tion for these data, based primarily on the identifica
of a reversal potential for i_{TI} , was to postulate absence of Na⁺ (see also ref. 10). The simplest
tion for these data, based primarily on the ider
of a reversal potential for i_{TI} , was to postulat
activated membrane channel with significant p
ities to sodium, potassi on for these data, based primarily on the identification fail reversal potential for i_{TI} , was to postulate a Ca²⁺-
tivated membrane channel with significant permeabil-
es to sodium, potassium, and calcium ions. With of a reversal potential for i_{TI} , was to postulate a C-
activated membrane channel with significant permea
ities to sodium, potassium, and calcium ions.
With the development of single channel record
techniques (31), rec

activated membrane channel with significant permeabil-
ities to sodium, potassium, and calcium ions. In
With the development of single channel recording (3
techniques (31), recordings in cardiac cells of a nonselec-
dive ities to sodium, potassium, and calcium ions.
With the development of single channel recording
techniques (31), recordings in cardiac cells of a nonselec-
tive cation channel activated by intracellular Ca^{2+} have
been o With the development of single channel recording (itechniques (31), recordings in cardiac cells of a nonselec-
tive cation channel activated by intracellular Ca^{2+} have the
been obtained by Colquhoun et al. (15) in cult techniques (31), recordings in cardiac cells of a nonsel
tive cation channel activated by intracellular Ca^{2+} h
been obtained by Colquhoun et al. (15) in cultured
neonatal myocytes and Ehara et al. (21) in adult guin
pi

DELAYED AFTERDEPOLARIZATIONS IN HEART MUSCLE
Dreakdown" of the membrane, backward transport ity among monovalent cations, but are highly selective^{*} through the Ca²⁺ pump, or opening of the SR Ca²⁺ against anions, and their gating shows little dependence
channels. The most likely mechanism would seem to be on membrane voltage. The unit conductance of the chan-
ope ity among monovalent cations, but are highly selective TIONS IN HEART MUSCLE
ity among monovalent cations, but are highly selective
against anions, and their gating shows little dependence
on membrane voltage. The unit conductance of the chan-TIONS IN HEART MUSCLE
ity among monovalent cations, but are highly selective
against anions, and their gating shows little dependen
on membrane voltage. The unit conductance of the chan-
nels studied by Colquhoun et al. (1 ity among monovalent cations, but are highly selective
against anions, and their gating shows little dependence
on membrane voltage. The unit conductance of the chan-
nels studied by Colquhoun et al. (15) was 30 to 40 pS
(ity among monovalent cations, but are highly selective
against anions, and their gating shows little dependence
on membrane voltage. The unit conductance of the chan-
nels studied by Colquhoun et al. (15) was 30 to 40 pS
 against anions, and their gating shows little dependence
on membrane voltage. The unit conductance of the chan-
nels studied by Colquhoun et al. (15) was 30 to 40 pS
 $(25-27^{\circ}\text{C})$, and these channels could be activated on membrane voltage. The unit conductance of the channels studied by Colquhoun et al. (15) was 30 to 40 pS (25-27°C), and these channels could be activated by inside Ca²⁺ concentrations of 1μ M. The channels studied b nels studied by Colquhoun et al. (15) was 30 to 40 pS (25-27°C), and these channels could be activated by inside Ca²⁺ concentrations of 1μ M. The channels studied by Ehara et al. (21) had a lower unit conductance of a (25-27°C), and these channels could be activated
inside Ca²⁺ concentrations of 1 μ M. The channels stud
by Ehara et al. (21) had a lower unit conductance
about 15 pS (20-25°C). The Ca²⁺ concentration thresh
for chan inside Ca²⁺ concentrations of 1 μ M. The channels studied
by Ehara et al. (21) had a lower unit conductance of
about 15 pS (20-25°C). The Ca²⁺ concentration threshold
for channel activation was 0.3 μ M, and the op by Ehara et al. (21) had a lower unit conductance
about 15 pS (20-25°C). The Ca²⁺ concentration thresh
for channel activation was 0.3 μ M, and the open prol
bility was half-maximal at a Ca²⁺ concentration of
 μ M. about 15 pS (20-25°C). The Ca²⁺ concentration threshold
for channel activation was 0.3 μ M, and the open proba-
bility was half-maximal at a Ca²⁺ concentration of 1.2
 μ M. Several additional reports of Ca²⁺-acti bility was half-maximal at a Ca^{2+} concentration of 1.2 μ M. Several additional reports of Ca^{2+} -activated nonselective cation channels have appeared for noncardiac tissue beginning with Yellen (88) in neuroblastoma μ M. Several additional reports of Ca²⁺-activated nonselective cation channels have appeared for noncardiac tissue beginning with Yellen (88) in neuroblastoma cells (see ref. 21 for references). Hill et al. (34) have μ M. Several additional reports of Ca²⁺-activated nonselective cation channels have appeared for noncardiac tissue beginning with Yellen (88) in neuroblastoma cells (see ref. 21 for references). Hill et al. (34) have lective cation channels have appeared for noncardiac
tissue beginning with Yellen (88) in neuroblastoma cells
(see ref. 21 for references). Hill et al. (34) have reported
the occasional incorporation into membrane bilayers tissue beginning with Yellen (88) in neuroblastoma cells
(see ref. 21 for references). Hill et al. (34) have reported
the occasional incorporation into membrane bilayers of
a nonselective cation channel from sarcolemmal v (see ref. 21 for references). Hill et al. (34) have reporte
the occasional incorporation into membrane bilayers a
a nonselective cation channel from sarcolemmal vesicle
prepared from adult canine ventricular muscle. Th
 the occasional incorporation into membrane bilayers of a nonselective cation channel from sarcolemmal vesicles prepared from adult canine ventricular muscle. This channel responded to increased Ca^{2+} by increased probab a nonselective cation channel from sarcolemmal vesicles
prepared from adult canine ventricular muscle. This
channel responded to increased Ca^{2+} by increased prob-
ability of being open. The single channel conductance
w prepared from adult canine ventricular muscle. This
channel responded to increased Ca^{2+} by increased prob-
ability of being open. The single channel conductance
was 120 pS, and the channel opening was markedly
voltage channel responded to increased Ca^{2+} by increased probability of being open. The single channel conductance was 120 pS, and the channel opening was markedly voltage dependent. While it is interesting to speculate that t ability of being open. The single channel conductance
was 120 pS, and the channel opening was markedly
voltage dependent. While it is interesting to speculate
that this incorporated channel is related to the channels
seen was 120 pS, and the channel opening was markedly
voltage dependent. While it is interesting to speculate
that this incorporated channel is related to the channels
seen by Colquhoun et al. (15), Ehara et al. (21), Yellen
(8 voltage dependent. While it is interesting to speculate
that this incorporated channel is related to the channels
seen by Colquhoun et al. (15), Ehara et al. (21), Yellen
(88), and others in intact cells, it must be noted that this incorporated channel is related to the channels
seen by Colquhoun et al. (15), Ehara et al. (21), Yellen
(88), and others in intact cells, it must be noted that the
properties of the channel found by Hill et al. seen by Colquhoun et al. (15), Ehara et al. (21), Yellen (88), and others in intact cells, it must be noted that the properties of the channel found by Hill et al. (34) differ in several important ways. In summary, a nons (88), and others in intact cells, it must be noted that the properties of the channel found by Hill et al. (34) differ in several important ways. In summary, a nonselective cation channel activated by intracellular Ca^{2+} properties of the channel found by Hill et al. (34) differ
in several important ways. In summary, a nonselective
cation channel activated by intracellular Ca^{2+} would
explain the experimental data qualitatively, altho in several important ways. In summary, a nonselective cation channel activated by intracellular Ca^{2+} would explain the experimental data qualitatively, although discrepancies remain in the measured reversal potentials cation channel activated by intracellular Ca^{2+} would
explain the experimental data qualitatively, although
discrepancies remain in the measured reversal potentials
under different ionic conditions. Membrane channels
wi explain the experimental data qualitatively, altho
discrepancies remain in the measured reversal potent
under different ionic conditions. Membrane change
with similar properties have been recorded by pa
clamp of heart cell discrepancies remain in the mead
under different ionic condition
with similar properties have
clamp of heart cells and by the is
mal vesicles into lipid bilayers.
The second mechanism sugge nder different ionic conditions. Membrane chann
th similar properties have been recorded by pa
amp of heart cells and by the incorporation of sarcole
al vesicles into lipid bilayers.
The second mechanism suggested for i_{TI}

with similar properties have been recorded by p
clamp of heart cells and by the incorporation of sarco
mal vesicles into lipid bilayers.
The second mechanism suggested for i_{TI} is the ele-
genic Na-Ca exchange pump driv clamp of heart cells and by the incorporation of sarcolem-
mal vesicles into lipid bilayers.
The second mechanism suggested for i_{TI} is the electro-
genic Na-Ca exchange pump driven by the transmem-
brane electrochemica mal vesicles into lipid bilayers.

The second mechanism suggested for i_{TI} is the electro-

genic Na-Ca exchange pump driven by the transmem-

brane electrochemical gradients for Na⁺ and Ca²⁺ ions

(2, 43, 65). In t The second mechanism suggested for i_{TI} is the electro-
genic Na-Ca exchange pump driven by the transmem-
brane electrochemical gradients for Na⁺ and Ca²⁺ ions
(2, 43, 65). In the normally polarized cell, Na⁺ ente genic Na-Ca exchange pump driven by the transmem-
brane electrochemical gradients for Na⁺ and Ca²⁺ ions
(2, 43, 65). In the normally polarized cell, Na⁺ entering
via the exchanger will be coupled to Ca²⁺ extrusion brane electrochemical gradients for Na^+ and Ca^{2+} ions (2, 43, 65). In the normally polarized cell, Na^+ entering via the exchanger will be coupled to Ca^{2+} extrusion. The stoichiometry for charge translocation is (2, 43, 65). In the normally polarized cell, Na⁺ ente
via the exchanger will be coupled to Ca^{2+} extrusion.
stoichiometry for charge translocation is now gener
accepted to be 3:2 (i.e., 3 Na⁺ to 1 Ca²⁺; see refs. via the exchanger will be coupled to Ca^{2+} extrusion. The stoichiometry for charge translocation is now generally accepted to be 3:2 (i.e., 3 Na⁺ to 1 Ca²⁺; see refs. 46 and 69). The initiating sequence for the dela stoichiometry for charge translocation is now generally accepted to be 3:2 (i.e., 3 Na⁺ to 1 Ca²⁺; see refs. 46 and 69). The initiating sequence for the delayed afterdepolarization, as with the nonselective cation cha accepted to be 3:2 (i.e., 3 Na⁺ to 1 Ca²⁺; see refs. 46 and 69). The initiating sequence for the delayed afterdepolarization, as with the nonselective cation channel hypothesis, is Ca²⁺ overload, producing cyclical 69). The initiating sequence for the delayed afterdepo-
larization, as with the nonselective cation channel hy-
pothesis, is Ca^{2+} overload, producing cyclical release of
 Ca^{2+} from the SR and giving rise to an oscill larization, as with the nonselective cation channel hypothesis, is Ca^{2+} overload, producing cyclical release of Ca^{2+} from the SR and giving rise to an oscillation in myoplasmic Ca^{2+} and the aftercontraction. An o Ca^{2+} from the SR and giving rise to an oscillation in
myoplasmic Ca^{2+} and the aftercontraction. An oscillatory
reduction in the transmembrane Ca^{2+} gradient would
facilitate Ca^{2+} extrusion and Na⁺ entry by th Ca^{2+} from the SR and giving rise to an oscillation in
myoplasmic Ca^{2+} and the aftercontraction. An oscillatory
reduction in the transmembrane Ca^{2+} gradient would
facilitate Ca^{2+} extrusion and Na⁺ entry by th myoplasmic Ca²⁺ and the aftercontraction. An oscillatory reduction in the transmembrane Ca²⁺ gradient would facilitate Ca²⁺ extrusion and Na⁺ entry by the exchanger. In turn, because of the electrogenicity of the facilitate Ca^{2+} extrusion and Na⁺ entry by the exchanger.
In turn, because of the electrogenicity of the Na-Ca exchange mechanism, this would result in a transient increase of the net inward movement of positive char (3 Na⁺ in for 1 Ca²⁺ out), thereby producing i_{T1} , or a delayed afterdepolarization. It is essential to recognize that the Na-Ca exchange mechanism itself must have a exchange mechanism, this would result in a transient
increase of the net inward movement of positive charge
(3 Na^+ in for 1 Ca^{2+} out), thereby producing i_{TI} , or a
delayed afterdepolarization. It is esse increase of the net inward movement of positive charge (3 Na^+ in for 1 Ca^{2+} out), thereby producing i_{T1} , or a delayed afterdepolarization. It is essential to recognize that the Na-Ca exchange mechanism itself mus (3 Na⁺ in for 1 Ca²⁺ out), thereby producing i_{T1}, or a delayed afterdepolarization. It is essential to recognize that the Na-Ca exchange mechanism itself must have a reversal potential at some voltage, and positive delayed afterdepolarization. It is essential to recognize that the Na-Ca exchange mechanism itself must have a reversal potential at some voltage, and positive to this voltage Ca^{2+} will be transported into the cell and

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

²²² JANUARY AND FOZZARD
However, at a fixed transmembrane voltage the effect of in the absence of
an oscillatory increase in intracellular Ca²⁺ will be to observation in 222
However, at a fixed transmembrane voltage the effect
an oscillatory increase in intracellular Ca^{2+} will be
alter transiently the current in a net inward direction.
The argument favoring the electrogenic Na-Ca e The argument favoring increase in intracellular Ca^{2+} will be to the transiently the current in a net inward direction.
The argument favoring the electrogenic Na-Ca exange mechanism has been supported by several reports

However, at a fixed transmembrane voltage the effect of
an oscillatory increase in intracellular Ca^{2+} will be to
alter transiently the current in a net inward direction.
The argument favoring the electrogenic Na-Ca exan oscillatory increase in intracellular Ca^{2+} will be to
alter transiently the current in a net inward direction.
The argument favoring the electrogenic Na-Ca ex-
change mechanism has been supported by several reports
 alter transiently the current in a net inward direction
The argument favoring the electrogenic Na-Ca
change mechanism has been supported by several repo
of the absence of an experimentally detectable rever
potential for i change mechanism has been supported by several reports rapid replacement of Na⁺ with Li⁺, which resulted in the
of the absence of an experimentally detectable reversal disappearance of delayed afterdepolarizations. Li of the absence of an experimentally detectable reversal
potential for i_{TI} . Arlock and Katzung (2) studied ouabain-
intoxicated papillary muscles using a sucrose gap voltage
clamp technique and found that the amplitude intoxicated papillary muscles using a sucrose gap voltage single channel recordings of Ca^{2+} -activated nonselective
clamp technique and found that the amplitude of i_{TI} cation channels (21, 81). Tseng and Wit (78) arg clamp technique and found that the amplitude of i_{TI}
became progressively smaller at less negative voltages,
but it did not reverse its polarity at voltages up to +30
mV. One possibility they suggested for the apparent
 clamp technique and found that the amplitude of i_{TI} compressively smaller at less negative voltages, that it did not reverse its polarity at voltages up to +30 mV. One possibility they suggested for the apparent crever but it did not reverse its polarity at voltages up to $+5$
mV. One possibility they suggested for the appare-
reversal potential found previously by other investigato
was that it could arise from Ca^{2+} -dependent activat mV. One possibility they suggested for the apparent
reversal potential found previously by other investigators
was that it could arise from Ca^{2+} -dependent activation
of i_{TI} channels to carry outward current. Another reversal potential found previously by other investigators
was that it could arise from Ca^{2+} -dependent activation
of i_{TI} channels to carry outward current. Another possi-
bility is suggested by the recent finding of was that it could arise from Ca^{2+} -dependent activation anisof i_{TI} channels to carry outward current. Another possi-
bility is suggested by the recent finding of Ca^{2+} -activated pote
outward K^+ channels in Purki bility is suggested by the recent finding of Ca²⁺-activated potentials has produced conflicting results. In part, this outward K⁺ channels in Purkinje cells (9). In sinoatrial could arise from other coexisting membran bility is suggested by the recent finding of Ca^{2+} -activated pote
outward K^+ channels in Purkinje cells (9). In sinoatrial could
node tissue, a current resembling i_{TI} can be induced by from
exposure to low $[K]_0$ outward K⁺ channels in Purkinje cells (9). In sinoatriande tissue, a current resembling i_{TI} can be induced bexposure to low $[K]_0$ solutions (7). Near voltages where a nonselective cation membrane channel mechanism m node tissue, a current resembling i_{TI} can be induced by exposure to low $[K]_0$ solutions (7). Near voltages where a nonselective cation membrane channel mechanism might reverse its polarity, low amplitude current oscil a nonselective cation membrane channel mechanism
might reverse its polarity, low amplitude current oscillations
lations persisted. The timing of the current oscillation
was voltage dependent, which complicated the differen might reverse its polarity, low amplitude current oscil-
lations persisted. The timing of the current oscillations shows
was voltage dependent, which complicated the differen-
tiation of inward from outward transient comp lations persisted. The timing of the current oscillatio was voltage dependent, which complicated the differe tiation of inward from outward transient componen Vassalle and coworkers (54) studied Purkinje fibers a also r was voltage dependent, which complicated the differen-
tiation of inward from outward transient components. ch
Vassalle and coworkers (54) studied Purkinje fibers and
also reported failure of i_{TI} to reverse its polarit tiation of inward from outward transient component
Vassalle and coworkers (54) studied Purkinje fibers at
also reported failure of i_{TI} to reverse its polarity. Unfor
tunately, the range of voltages in their study was l Vassalle and coworkers (54) studied Purkinje fibers and also reported failure of i_{TI} to reverse its polarity. Unfortunately, the range of voltages in their study was limited to negative potentials. In embryonic heart also reported failure of i_{TI} to reverse its polarity. Unfor-
tunately, the range of voltages in their study was limited
to negative potentials. In embryonic heart cell aggre-
gates, a transient inward current resemblin tunately, the range of voltages in their study was limited
to negative potentials. In embryonic heart cell aggre-
gates, a transient inward current resembling i_{TI} is in-
duced with abrupt exposure to caffeine (13). At to negative potentials. In embryonic heart cell aggre-seen dugates, a transient inward current resembling i_{TI} is in-
duced with abrupt exposure to caffeine (13). At less ouabain
megative potentials, its amplitude was d gates, a transient inward current resembling i_{T1} is in-
duced with abrupt exposure to caffeine (13). At less of
negative potentials, its amplitude was decreased, but it
failed to reverse polarity at potentials up to duced with abrupt exposure to caffeine (13). At less
negative potentials, its amplitude was decreased, but it
failed to reverse polarity at potentials up to +60 mV. A
possible limitation in the interpretation of data obta negative potentials, its amplitude was decreased, but it failed to reverse polarity at potentials up to $+60$ mV. A possible limitation in the interpretation of data obtained in the studies just cited is that in none of t failed to reverse polarity at potentials up to $+60$ mV. A possible limitation in the interpretation of data obtained in the studies just cited is that in none of these reports was the presence of an oscillation in intrac possible limitation in the interpretation of data obtained
in the studies just cited is that in none of these reports d
was the presence of an oscillation in intracellular Ca^{2+}
shown (imaged directly or inferred by rec was the presence of an oscillation in intracellular Ca^{2+}
shown (imaged directly or inferred by recording tension).
Arlock and Katzung (2), Noble (65), and Brown et al. (7)
were able to fit experimental data to mathemat was the presence of an oscillation in intracellular Ca^{2+} wishown (imaged directly or inferred by recording tension). getails and Katzung (2), Noble (65), and Brown et al. (7) prevers able to fit experimental data to ma shown (imaged directly or inferred by recording tension).
Arlock and Katzung (2), Noble (65), and Brown et al. (7)
were able to fit experimental data to mathematical
models containing electrogenic Na-Ca exchange, which
su Arlock and Katzung (2), Noble (65), and Brown et al. (7) pre
were able to fit experimental data to mathematical of
models containing electrogenic Na-Ca exchange, which ma
supported their conclusions that the Na-Ca exchang were able to fit experimental data to mathematical of models containing electrogenic Na-Ca exchange, which m
supported their conclusions that the Na-Ca exchange pip
mechanism was the dominant charge carrier for i_{T1} . L models containing electrogenic Na-Ca exchange, which mapported their conclusions that the Na-Ca exchange pig mechanism was the dominant charge carrier for i_{T1} . Lipp de and Pott (55) recorded a spontaneous transient in mechanism was the dominant charge carrier for i_{T1} . Lipp de
and Pott (55) recorded a spontaneous transient inward de
current in single dialyzed cultured guinea pig ventricular br
myocytes. This current was accompanied and Pott (55) recorded a spontaneous transient inward department in single dialyzed cultured guinea pig ventricular bramyocytes. This current was accompanied by a strong for contraction, and it shared many properties with current in single dialyzed cultured guinea pig ventricular bra
myocytes. This current was accompanied by a strong for
contraction, and it shared many properties with i_{T1} . The cha
current remained inward with voltage s myocytes. This current was accompanied by a strong for contraction, and it shared many properties with i_{TI} . The current remained inward with voltage steps up to $+75$ in mV, and its characteristics were most compatible contraction, and it shared many properties with i_{TI} . The characteristic inward with voltage steps up to +75 incm V, and its characteristics were most compatible with a ANa-Ca exchanger transporting 3 Na^+ to $1 \text{ Ca$ current remained inward with voltage steps up to $+75$ mV, and its characteristics were most compatible with a Na-Ca exchanger transporting 3 Na⁺ to 1 Ca²⁺. One unusual feature of the current was that its activation d mV, and its characteristics were most compatible with a
Na-Ca exchanger transporting 3 Na^+ to 1 Ca^{2+} . One
unusual feature of the current was that its activation did
not require Ca^{2+} overload. Lipp and Po Na-Ca exchanger transporting 3 Na^+ to 1 Ca^{2+} . One was unusual feature of the current was that its activation did nis not require Ca²⁺ overload. Lipp and Pott concluded that not electrogenic Na-Ca exchange was unusual feature of the current was that its activation did
not require Ca^{2+} overload. Lipp and Pott concluded that
electrogenic Na-Ca exchange was the dominant charge
carrier of the spontaneous transient inward current electrogenic Na-Ca exchange was the dominant charge electrogenic Na-Ca exchange was the dominant charge
carrier of the spontaneous transient inward current they
studied. They also suggested that Na-Ca exchange might
werticipate in establishing conditions [i.e., raising int carrier of the spontaneous transient inward current they
studied. They also suggested that Na-Ca exchange might
participate in establishing conditions [i.e., raising intra-
cellular Ca (Ca_i)] needed to initiate transient

3ANUARY AND FOZZARD

However, at a fixed transmembrane voltage the effect of in the absence of massive cellular Ca^{2+} overload. A recent

an oscillatory increase in intracellular Ca^{2+} will be to observation in atrial FOZZARD
in the absence of massive cellular Ca^{2+} overload. A recent
observation in atrial coronary sinus cells has been used o FOZZARD
in the absence of massive cellular Ca²⁺ overload. A recent
observation in atrial coronary sinus cells has been used
to argue further in favor of a Na-Ca exchange mechanism The absence of massive cellular Ca^{2+} overload. A recent observation in atrial coronary sinus cells has been used to argue further in favor of a Na-Ca exchange mechanism (78; see also ref. 2). A fast-flow chamber permit in the absence of massive cellular Ca^{2+} overload. A recent observation in atrial coronary sinus cells has been used to argue further in favor of a Na-Ca exchange mechanism (78; see also ref. 2). A fast-flow chamber per in the absence of massive cellular Ca²⁺ overload. A recent observation in atrial coronary sinus cells has been used to argue further in favor of a Na-Ca exchange mechanism (78; see also ref. 2). A fast-flow chamber perm observation in atrial coronary sinus cells has been used
to argue further in favor of a Na-Ca exchange mechanism
(78; see also ref. 2). A fast-flow chamber permitted the
rapid replacement of Na⁺ with Li⁺, which result to argue further in favor of a Na-Ca exchange mechanism
(78; see also ref. 2). A fast-flow chamber permitted the
rapid replacement of Na⁺ with Li⁺, which resulted in the
disappearance of delayed afterdepolarizations. (78; see also ref. 2). A fast-flow chamber permitted the rapid replacement of Na⁺ with Li⁺, which resulted in the disappearance of delayed afterdepolarizations. Li⁺ has been reported to substitute nearly equally for rapid replacement of Na⁺ with Li⁺, which resulted in the disappearance of delayed afterdepolarizations. Li⁺ has been reported to substitute nearly equally for Na⁺ in single channel recordings of Ca^{2+} -activated disappearance of delayed afterdepolarizations. Li⁺ has
been reported to substitute nearly equally for Na⁺ in
single channels (21, 81). Tseng and Wit (78) argued that
the disappearance of delayed afterdepolarizations w cation channels (21, 81). Tseng and Wit (78) argued that
the disappearance of delayed afterdepolarizations was
not expected for a Li⁺-permeable nonselective cation
channel mechanism, and they interpreted their findings
 the disappearance of delayed afterdepolarizations was to be consistent with a Na-Ca exchange-mediated mech-

The experimental approach of searching for reversal potentials has produced conflicting results. In part, this to be consistent with a Na-Ca exchange-mediated mech-
anism in which Li⁺ can not substitute for Na⁺.
The experimental approach of searching for reversal
potentials has produced conflicting results. In part, this
could anism in which Li⁺ can not substitute for Na⁺.
The experimental approach of searching for reversa
potentials has produced conflicting results. In part, this
could arise from other coexisting membrane currents and
from The experimental approach of searching for reversal
potentials has produced conflicting results. In part, this
could arise from other coexisting membrane currents and
from tissue differences. Therefore, other experimental potentials has produced conflicting results. In part, this could arise from other coexisting membrane currents and from tissue differences. Therefore, other experimental approaches to the mechanism for i_{Tl} must be sou could arise from other coexisting membrane currents and
from tissue differences. Therefore, other experimental
approaches to the mechanism for i_{TI} must be sought, and
recent experimental observations have provided furt approaches to the mechanism for i_{TI} must be sought, and
recent experimental observations have provided further
insights. The opening (or closing) of a membrane channel
should be accompanied by a change in membrane conrecent experimental observations have provided further recent experimental observations have provided furt
insights. The opening (or closing) of a membrane chan
should be accompanied by a change in membrane c
ductance, whereas the movement of charge on an
change pump should no insights. The opening (or closing) of a membrane channel
should be accompanied by a change in membrane con-
ductance, whereas the movement of charge on an ex-
change pump should not be associated with a conduct-
ance chang should be accompanied by a change in membrane con-
ductance, whereas the movement of charge on an ex-
change pump should not be associated with a conduct-
ance change. In embryonic heart cell aggregates exposed
to caffein ductance, whereas the movement of charge on an ex-
change pump should not be associated with a conduct-
ance change. In embryonic heart cell aggregates exposed
to caffeine (13), which induces a transient inward current
res change pump should not be associated with a conduct-
ance change. In embryonic heart cell aggregates exposed
to caffeine (13), which induces a transient inward current
resembling i_{Ti} , no membrane conductance changes wer ance change. In embryonic heart cell aggregates exposed
to caffeine (13), which induces a transient inward current
resembling i_{TI} , no membrane conductance changes were
seen during the inward current. A similar brief re to caffeine (13), which induces a transient inward current
resembling i_{TI} , no membrane conductance changes were
seen during the inward current. A similar brief report
has appeared for neonatal rat cardiac cells exposed resembling i_{T1}, no membrane conductance changes were
seen during the inward current. A similar brief report
has appeared for neonatal rat cardiac cells exposed to
ouabain $(1 \times 10^{-4} \text{ M})$ or K⁺-free medium (80). The
 seen during the inward current. A similar brief report
has appeared for neonatal rat cardiac cells exposed to
ouabain $(1 \times 10^{-4} \text{ M})$ or K⁺-free medium (80). The
interpretation of these results requires some caution,
 ouabain $(1 \times 10^{-4}$ M) or K⁺-free medium (80). The
interpretation of these results requires some caution,
however, since small conductance changes may not be
readily apparent. A decrease in membrane conductance
during interpretation of these results requires some caution,
however, since small conductance changes may not be
readily apparent. A decrease in membrane conductance
during i_{TI} was reported in Purkinje fibers made toxic
with however, since small conductance changes may not be readily apparent. A decrease in membrane conductance during i_{TI} was reported in Purkinje fibers made toxic with strophanthidin (54). The experimental records suggest readily apparent. A decrease in membrane conductance
during i_{TI} was reported in Purkinje fibers made toxic
with strophanthidin (54). The experimental records sug-
gest that a decrease in the conductance was already
pre during i_{TI} was reported in Purkinje fibers made to
with strophanthidin (54). The experimental records su
gest that a decrease in the conductance was alrea
present at the onset of i_{TI} , possibly reflecting activation
 with strophanthidin (54). The experimental records suggest that a decrease in the conductance was already present at the onset of i_{TI} , possibly reflecting activation of an additional membrane current. Recently, Mechmann gest that a decrease in the conductance was already
present at the onset of i_{TI} , possibly reflecting activation
of an additional membrane current. Recently, Mech-
mann and Pott (61) observed i_{TI} in single cultured g present at the onset of i_{TI} , possibly reflecting activation
of an additional membrane current. Recently, Mech-
mann and Pott (61) observed i_{TI} in single cultured guinea
pig atrial myocytes. Its induction was associa of an additional membrane current. Recently, M
mann and Pott (61) observed i_{TI} in single cultured gu
pig atrial myocytes. Its induction was associated depolarization or with exposure to caffeine. The cur
depended on me mann and Pott (61) observed i_{TI} in single cultured guinea
pig atrial myocytes. Its induction was associated with
depolarization or with exposure to caffeine. The current
depended on membrane potential and on the transm pig atrial myocytes. Its induction was associated with
depolarization or with exposure to caffeine. The current
depended on membrane potential and on the transmem-
brane gradients for Na⁺ and Ca²⁺ in a manner expected depolarization or with exposure to caffeine. The current
depended on membrane potential and on the transmem-
brane gradients for $Na⁺$ and $Ca²⁺$ in a manner expected
for electrogenic $Na⁻Ca$ exchange. They als depended on membrane potential and on the transmem-
brane gradients for Na⁺ and Ca²⁺ in a manner expected
for electrogenic Na-Ca exchange. They also saw single
channel currents that were associated with presumptive
in ane gradients for Na⁺ and Ca²⁺ in a manner expected
r electrogenic Na-Ca exchange. They also saw single
annel currents that were associated with presumptive
crease in intracellular Ca²⁺ (see also refs. 45 and 55).
A for electrogenic Na-Ca exchange. They also saw sin
channel currents that were associated with presumpt
increase in intracellular Ca^{2+} (see also refs. 45 and 55
Another approach taken by Cannell and Lederer (
was to att

channel currents that were associated with presumptive
increase in intracellular Ca^{2+} (see also refs. 45 and 55).
Another approach taken by Cannell and Lederer (10)
was to attempt to disable the Na-Ca exchange mecha-
n increase in intracellular Ca²⁺ (see also refs. 45 and 55).
Another approach taken by Cannell and Lederer (10)
was to attempt to disable the Na-Ca exchange mecha-
nism by removal of Na⁺, while leaving the Ca²⁺-activa Another approach taken by Cannell and Lederer (10) was to attempt to disable the Na-Ca exchange mechanism by removal of Na⁺, while leaving the Ca²⁺-activated nonselective cation channel mechanism intact. They reasoned was to attempt to disable the Na-Ca exchange mechanism by removal of Na^+ , while leaving the Ca^{2+} -activated nonselective cation channel mechanism intact. They reasoned that, if i_{TI} were the result of the Na-Ca exch nonselective cation channel mechanism intact. They reasoned that, if i_{TI} were the result of the Na-Ca exchange mechanism, then it should be unavailable, whereas if i_{TI} were the result of a nonselective cation channe Tyrode's solution to inhibit Na-Ca exchange, and with should be detected. They used $Na⁺$ -free isotonic $Ca²⁺$

PHARMACOLOGICAL REVIEWS

aspet

DELAYED AFTERDEPOLARIZA
tions and an oscillatory current resembling i_{TI} with a
reversal potential near -40 mV. Power spectral analysis
of the current and tension records showed similar fre-DELAYED AFTERDEPOLARIS
tions and an oscillatory current resembling i_{TI} with a
reversal potential near -40 mV. Power spectral analysis
of the current and tension records showed similar fre-
quency contents, and a depende tions and an oscillatory current resembling i_{TI} with a reversal potential near -40 mV. Power spectral analysis of the current and tension records showed similar frequency contents, and a dependence of current amplitu tions and an oscillatory current resembling i_{TI} with a reversal potential near -40 mV. Power spectral analysis of the current and tension records showed similar frequency contents, and a dependence of current amplitu reversal potential near -40 mV. Power spectral analysis the
of the current and tension records showed similar fre-
quency contents, and a dependence of current amplitude
on the tension amplitude was shown. Because their of the current and tension records showed similar fre-
quency contents, and a dependence of current amplitude
on the tension amplitude was shown. Because their find-
ings were obtained in a Na⁺-free environment, they
co quency contents, and a dependence of current amplitude
on the tension amplitude was shown. Because their find-
ings were obtained in a $Na⁺$ -free environment, they
concluded that inward $Na⁻Ca$ exchange current cou on the tension amplitude was shown. Because their findings were obtained in a Na⁺-free environment, they concluded that inward Na-Ca exchange current could not be present. Rather, the persistence of the transient inward ings were obtained in a Na⁺-free environment, they
concluded that inward Na-Ca exchange current could
not be present. Rather, the persistence of the transient
inward current constituted a powerful argument in favor
of a concluded that inward Na-Ca exchange current could
not be present. Rather, the persistence of the transient
inward current constituted a powerful argument in favor
of a Ca²⁺-activated membrane channel mechanism for
i_{TI} not be present. Rather, the persistence of the transient
inward current constituted a powerful argument in favor
of a Ca^{2+} -activated membrane channel mechanism for
 i_{TI} , with Ca^{2+} carrying the depolarizing current inward current constituted a powerful argument in favor of a Ca^{2+} -activated membrane channel mechanism for i_{TI} , with Ca^{2+} carrying the depolarizing current under these conditions. These data seem to provide the m these conditions. These data seem to provide the most
direct test of the mechanisms proposed for i_{TI} . An unre-
solved question is why attempts to inhibit the Na-Ca
exchange mechanism with sodium substitutes other than
 direct test of the mechanisms proposed for i_{T1} . An unre-
solved question is why attempts to inhibit the Na-Ca
exchange mechanism with sodium substitutes other than
Ca²⁺ (Li⁺, TRIS, choline, sucrose, and TMA) (see solved question is why attempts to inhibit the Na-Ca
exchange mechanism with sodium substitutes other than
Ca²⁺ (Li⁺, TRIS, choline, sucrose, and TMA) (see refs.
10, 36, and 40) produce i_{TI} only transiently, before exchange mechanism with sodium substitutes other than Ca^{2+} (Li^+ , TRIS, choline, sucrose, and TMA) (see refs.
10, 36, and 40) produce i_{T1} only transiently, before it then disappears under steady-state conditions. Ca^{2+} (Li⁺, TRIS, choline, sucrose, and TMA) (see refs.

10, 36, and 40) produce i_{T1} only transiently, before it then

disappears under steady-state conditions. One possibility

is that the Ca^{2+} overload adequa 10, 36, and 40) produce i_{TI} only transiently, before it then
disappears under steady-state conditions. One possibility
is that the Ca²⁺ overload adequate to sustain i_{TI} cannot
be maintained unless the external Ca disappears under steady-state conditions. One possibility
is that the Ca²⁺ overload adequate to sustain i_{TI} cannot
be maintained unless the external Ca²⁺ concentration is
very high. Cannell and Lederer (10) pointed is that the Ca²⁺ overload adequate to sustain i_{TI} cannot
be maintained unless the external Ca²⁺ concentration is
very high. Cannell and Lederer (10) pointed out that,
while their data support a Ca²⁺-activated non be maintained unless the external Ca^{2+} concentration very high. Cannell and Lederer (10) pointed out t while their data support a Ca^{2+} -activated nonselection channel as the major mechanism for i_{TI} , the results di very high. Cannell and Lederer (10) pointed out that,
while their data support a Ca^{2+} -activated nonselective
cation channel as the major mechanism for i_{TI} , their
mesults did not exclude Na-Ca exchange from contribut while their data support a Ca^{2+} -activated nonselective
cation channel as the major mechanism for i_{TI} , the
results did not exclude Na-Ca exchange from contribu
ing to delayed afterdepolarizations. They also suggest
t cation channel as the major mechanism for i_{TI} , their
results did not exclude Na-Ca exchange from contribut-
ing to delayed afterdepolarizations. They also suggested
that i_{TI} might be activated by the transient rise results did not exclude Na-Ca exchange from contribut-
ing to delayed afterdepolarizations. They also suggested
that i_{TI} might be activated by the transient rise in intra-
cellular Ca²⁺ that occurs during normal acti ing to delayed afterdepolarizations. They also suggested
that i_{TI} might be activated by the transient rise in intra-
cellular Ca^{2+} that occurs during normal action potentials
and, if so, it would contribute to the p that i_{TI} might be activated by the transient rise in intracellular Ca^{2+} that occurs during normal action potentials and, if so, it would contribute to the plateau phase of the cardiac action potential. Recently, Kim cellular Ca²⁺ that occurs during normal action potentials
and, if so, it would contribute to the plateau phase of the
cardiac action potential. Recently, Kimura (45) has re-
ported the presence of an i_{T1}-like current and, if so, it would contribute to the plateau phase of the cardiac action potential. Recently, Kimura (45) has reported the presence of an i_{T1}-like current in Ca²⁺-loaded isolated guinea pig ventricular cells. The cu cardiac action potential. Recently, Kimura (45) has reported the presence of an i_{TT} -like current in Ca²⁺-loaded Easiolated guinea pig ventricular cells. The current was inward at both negative and positive voltages. ported the presence of an i_{T1}-like current in Ca²⁺-loaded
isolated guinea pig ventricular cells. The current was
inward at both negative and positive voltages. Block of
the Na-Ca exchanger by the replacement of Na⁺ isolated guinea pig ventricular cells. The current was
inward at both negative and positive voltages. Block of
the Na-Ca exchanger by the replacement of Na⁺ with
Li⁺ reduced the current amplitude (but failed to abolish inward at both negative and positive voltages. Block of
the Na-Ca exchanger by the replacement of Na⁺ with
Li⁺ reduced the current amplitude (but failed to abolish
ti), and it reversed polarity near 0 mV. These prelim the Na-Ca exchanger by the replacement of Na⁺ w
Li⁺ reduced the current amplitude (but failed to abol
it), and it reversed polarity near 0 mV. These preliminings were interpreted to suggest the presence of b
Na-Ca exc Li⁺ reduced the current amp
it), and it reversed polarity no
findings were interpreted to :
Na-Ca exchange current an
cific cation channel current.
In summary, there are two , and it reversed polarity near 0 mV. These preliminary
Idings were interpreted to suggest the presence of both
a-Ca exchange current and a Ca^{2+} -activated nonspe-
ic cation channel current.
In summary, there are two hy findings were interpreted to suggest the presence of both
Na-Ca exchange current and a Ca^{2+} -activated nonspe-
cific cation channel current.
In summary, there are two hypotheses to explain de-
layed afterdepolarizations

Na-Ca exchange current and a Ca²⁺-activated nonspecific cation channel current.
In summary, there are two hypotheses to explain de-
layed afterdepolarizations or i_{TI} , both dependent on a
process sensitive to intracel cific cation channel current.

In summary, there are two hypotheses to explain de-

layed afterdepolarizations or i_{TI} , both dependent on a

process sensitive to intracellular Ca^{2+} . A nonselective

sarcolemmal cation In summary, there are two hypotheses to explain de-
layed afterdepolarizations or i_{TI} , both dependent on a diprocess sensitive to intracellular Ca^{2+} . A nonselective
sarcolemmal cation channel that is activated by Ca layed afterdepolarizations or i_{TI} , both dependent on
process sensitive to intracellular Ca^{2+} . A nonselective
sarcolemmal cation channel that is activated by Ca^{2+} hi
been identified, and it would be sufficient to process sensitive to intracellular Ca⁻¹. A nonselective
sarcolemmal cation channel that is activated by Ca^{2+} has
been identified, and it would be sufficient to explain the
membrane phenomena. Alternatively, increased sarcolemmal cation channel that is activated by Ca^{2+} has
been identified, and it would be sufficient to explain the
membrane phenomena. Alternatively, increased intra-
cellular Ca^{2+} will activate Na-Ca exchange to i been identified, and it would be sufficient to explain the
membrane phenomena. Alternatively, increased intra-
cellular Ca²⁺ will activate Na-Ca exchange to increase
Ca²⁺ efflux and Na⁺ influx; and this results in an cellular Ca²⁺ will activate Na-Ca exchange to increase $\frac{1}{111}$ and its aftercontraction can be induced separately in Ca²⁺ efflux and Na⁺ influx; and this results in an inward, tissue already having early afterde depolarizing exchange current. Persuasive evidence ex-
ists for both mechanisms, and it seems increasingly likely
ists for both could be involved. The sensitivity for each bility of L-type Ca^{2+} current (36). One mechan with small rises in Ca^{2+} activating only Na-Ca exchange, depolarizing exchange current. Persuasive evidence exists for both mechanisms, and it seems increasingly likely that both could be involved. The sensitivity for each mechanism to a rise in Ca^{2+} , however, may be differe ists for both mechanisms, and it seems increasingly likely
that both could be involved. The sensitivity for each
mechanism to a rise in Ca^{2+} , however, may be different
with small rises in Ca^{2+} activating only Na-Ca that both could be involved. The sensitivity for each mechanism to a rise in Ca^{2+} , however, may be different with small rises in Ca^{2+} activating only Na-Ca exchange whereas with larger rises in Ca^{2+} , both the Namechanism to a rise in Ca^{2+} , however, may be different tult with small rises in Ca^{2+} activating only Na-Ca exchange, in whereas with larger rises in Ca^{2+} , both the Na-Ca exchange and the Ca^{2+} -activated nonsele with small rises in Ca^{2+} activating only Na-Ca exchange,
whereas with larger rises in Ca^{2+} , both the Na-Ca ex-
change and the Ca^{2+} -activated nonselective cation chan-
nel mechanisms may operate. Determination of change and the Ca^{2+} -activated nonselective cation channel mechanisms may operate. Determination of the quantitative contribution of each mechanism in the various experimental models used will require development

tions and an oscillatory current resembling i_{TI} with a of specific blockers of the nonspecific cation channel and
reversal potential near -40 mV. Power spectral analysis the Na-Ca exchange system and further study of TIONS IN HEART MUSCLE
of specific blockers of the nonspecific cation channel and
the Na-Ca exchange system and further study of their TIONS IN HEART MUSCLE 223
of specific blockers of the nonspecific cation channel and
the Na-Ca exchange system and further study of their
separate dependencies on Ca^{2+} . separate dependencies on Ca^{2+} .
VI. Early Afterdepolarizations—Is the Exercific blockers of the nonspecific cation channel an a-Ca exchange system and further study of the the dependencies on Ca^{2+} .
VI. Early Afterdepolarizations—Is the Mechanism the Same? ers of the honspectric cation
hange system and further st
lencies on Ca²⁺.
Mechanism the Same?
polarizations are secondary

of a Ca^{2+} -activated membrane channel mechanism for arrhythmogenic mechanism. The basis for early after-
 i_{TI} , with Ca^{2+} carrying the depolarizing current under

these conditions. These data seem to provide the mo solved question is why attempts to inhibit the Na-Ca
exchange mechanism with sodium substitutes other than
 Ca^{2+} (Li⁺, TRIS, choline, sucrose, and TMA) (see refs.
 Ca^{2+} (Li⁺, TRIS, choline, sucrose, and TMA) (see parate dependencies on Ca^{2+} .

VI. Early Afterdepolarizations --- Is the

Mechanism the Same?

Early afterdepolarizations are secondary depolarization

ons that occur before complete repolarization of VI. Early Afterdepolarizations --- Is the
Mechanism the Same?
Early afterdepolarizations are secondary depolariza-
tions that occur before complete repolarization of the
cardiac action potential. They are another potential v1. Early Alterdepolarizations—is the
Mechanism the Same?
Early afterdepolarizations are secondary depolariza-
tions that occur before complete repolarization of the
cardiac action potential. They are another potentially
a mechanism the same?
Early afterdepolarizations are secondary depolarizations that occur before complete repolarization of the cardiac action potential. They are another potentially
arrhythmogenic mechanism. The basis for e Early afterdepolarizations are secondary depolariza-
tions that occur before complete repolarization of the
cardiac action potential. They are another potentially
arrhythmogenic mechanism. The basis for early after-
depola tions that occur before complete repolarization of the cardiac action potential. They are another potentially arrhythmogenic mechanism. The basis for early after-
depolarizations is poorly understood, and several cellular
 cardiac action potential. They are another potentially
arrhythmogenic mechanism. The basis for early after-
depolarizations is poorly understood, and several cellular
processes have been implicated in their generation (for arrhythmogenic mechanism. The basis for early after-
depolarizations is poorly understood, and several cellular
processes have been implicated in their generation (for
reviews, see refs. 37 and 86). It also has been shown
 depolarizations is poorly understood, and several cellular
processes have been implicated in their generation (for
reviews, see refs. 37 and 86). It also has been shown
recently that early afterdepolarizations may be initi processes have been implicated in their generation (freviews, see refs. 37 and 86). It also has been show
recently that early afterdepolarizations may be initiat
from more than one range of voltages (17) which m
suggest mo anism is that both early and delayed afterdepolarizations recently that early afterdepolarizations may be initiat
from more than one range of voltages (17) which m
suggest more than one mechanism. One postulated mec
anism is that both early and delayed afterdepolarizatio
may h from more than one range of voltages (17) which may suggest more than one mechanism. One postulated mechanism is that both early and delayed afterdepolarizations may have a common basis in intracellular Ca^{2+} oscillat suggest more than one mechanism. One postulated mechanism is that both early and delayed afterdepolarizations may have a common basis in intracellular Ca^{2+} oscillations resulting from Ca^{2+} overload of the SR (11). P anism is that both early and delayed afterdepolarize
may have a common basis in intracellular Ca²⁺ oscillations resulting from Ca²⁺ overload of the SR (11).
haps the strongest evidence supporting a common
for intracel may have a common basis in intracellular Ca^{2+} oscillations resulting from Ca^{2+} overload of the SR (11). Perhaps the strongest evidence supporting a common role for intracellular Ca^{2+} oscillations is that "afterco tions resulting from Ca^{2+} overload of the SR (11). Perhaps the strongest evidence supporting a common role for intracellular Ca^{2+} oscillations is that "aftercontractions" can be recorded with early as well as delaye for intracellular Ca^{2+} oscillations is that "aftercontractions" can be recorded with early as well as delayed after
depolarizations (37). Furthermore, both early and delayed after
depolarizations are forms of triggered tions" can be recorded with early as well as delayed
afterdepolarizations (37). Furthermore, both early and
delayed afterdepolarizations are forms of triggered activ-
ity and require an initiating event, such as one or mor afterdepolarizations (37). Furthermore, both early and afterdepolarizations (37). Furthermore, both early a delayed afterdepolarizations are forms of triggered act
ity and require an initiating event, such as one or mo
action potentials. Both early and delayed afterdepola
zati delayed afterdepolarizations are forms of triggered activity and require an initiating event, such as one or more action potentials. Both early and delayed afterdepolarizations can be suppressed by a number of drugs, inclu ity and require an initiating event, such as one or
action potentials. Both early and delayed afterdepo
zations can be suppressed by a number of drugs, in
ing Ca²⁺ channel-blocking drugs. However, several
of evidence sug action potentials. Both early and delayed afterdepolarizations can be suppressed by a number of drugs, including Ca^{2+} channel-blocking drugs. However, several lines of evidence suggest that early and delayed afterdepol zations can be suppressed by a number of drugs, in
ing Ca²⁺ channel-blocking drugs. However, several
of evidence suggest that early and delayed afterdep
izations may not share the same cellular mechanism
Early afterdepol ing Ca^{2+} channel-blocking drugs. However, several lines
of evidence suggest that early and delayed afterdepolar-
izations may not share the same cellular mechanism. (a)
Early afterdepolarizations, unlike delayed after of evidence suggest that early and delayed afterdepolizations may not share the same cellular mechanism.
Early afterdepolarizations, unlike delayed afterdepolarizations, are increasingly likely to occur at low stimulatifre izations may not share the same cellular mechanism. (a)
Early afterdepolarizations, unlike delayed afterdepolarizations, are increasingly likely to occur at low stimulation
frequencies and commonly are associated with pr Early afterdepolarizations, unlike delayed afterdepolarizations, are increasingly likely to occur at low stimulation
frequencies and commonly are associated with prolongation of the cardiac action potential. (b) When cons zations, are increasingly likely to occur at low stimulation
frequencies and commonly are associated with prolon-
gation of the cardiac action potential. (b) When constant
current pulses are used to polarize the cell mem frequencies and commonly are associated with prolongation of the cardiac action potential. (b) When constant current pulses are used to polarize the cell membrane to different initiating voltages, the resulting early or gation of the cardiac action potential. (b) When constant current pulses are used to polarize the cell membrane to different initiating voltages, the resulting early or delayed afterdepolarizations reach different peak vo current pulses are used to polarize the cell membran
different initiating voltages, the resulting early or
layed afterdepolarizations reach different peak volta
For early afterdepolarizations, this relationship ha
steep in different initiating voltages, the resulting early or de-
layed afterdepolarizations reach different peak voltages.
For early afterdepolarizations, this relationship has a
steep inverse slope (37), whereas for delayed afte layed afterdepolarizations reach different peak volta
For early afterdepolarizations, this relationship has
teep inverse slope (37), whereas for delayed afterdencianarizations, the slope of the relationship is in the oppo
 For early afterdepolarizations, this relationship has a steep inverse slope (37), whereas for delayed afterdepolarizations, the slope of the relationship is in the opposite direction (82). (c) The peak voltage of early af steep inverse slope (37), whereas for delayed afterdepo-
larizations, the slope of the relationship is in the opposite
direction (82). (c) The peak voltage of early afterdepo-
larizations in Purkinje fibers may exceed the larizations, the slope of the relationship is in the opposite
direction (82). (c) The peak voltage of early afterdepo-
larizations in Purkinje fibers may exceed the reversal
potential reported for i_{TI} (37). (d) Inte direction (82). *(c)* The peak voltage of early afterdepolarizations in Purkinje fibers may exceed the reversal potential reported for i_{TI} (37). *(d)* Interventions that modify intracellular Ca^{2+} (e.g., BAPTA, ryano larizations in Purkinje fibers may exceed the reversal
potential reported for i_{TI} (37). (d) Interventions that
modify intracellular Ca²⁺ (e.g., BAPTA, ryanodine) sup-
press delayed but not early afterdepolarizatio potential reported for i_{TI} (37). (*d*) Interventions that
modify intracellular Ca²⁺ (e.g., BAPTA, ryanodine) sup-
press delayed but not early afterdepolarizations (59). (*e*)
 i_{TI} and its aftercontraction can modify intracellular Ca²⁺ (e.g., BAPTA, ryanodine) suppress delayed but not early afterdepolarizations (59). (*e*) i_{TI} and its aftercontraction can be induced separately in tissue already having early afterdepolar press delayed but not early afterdepolarizations (59) . (e) i_{TI} and its aftercontraction can be induced separately in tissue already having early afterdepolarizations (36). (f)
Early afterdepolarizations arising at action potential pla-
teau voltages have been shown to depend on the availa-
bility of L-type Ca²⁺ current (36). One mec Early afterdepolarizations arising at action potential plateau voltages have been shown to depend on the availability of L-type Ca^{2+} current (36). One mechanism postulated to explain early afterdepolarizations is that teau voltages have been shown to depend on the availability of L-type Ca²⁺ current (36). One mechanism potulated to explain early afterdepolarizations is that the induction requires lengthening of the action potential p bility of L-type Ca²⁺ current (36). One mechanism postulated to explain early afterdepolarizations is that their induction requires lengthening of the action potential plateau within a voltage range where L-type Ca²⁺ tulated to explain early afterdepolarizations is that their induction requires lengthening of the action potential plateau within a voltage range where L-type Ca²⁺ channels can recover from inactivated to closed states, induction requires lengthening of the action potential
plateau within a voltage range where L-type Ca^{2+} chan-
nels can recover from inactivated to closed states, and
then reopen. Thus with repolarization, recovery of d plateau within a voltage range where L-type Ca²⁺ chanels can recover from inactivated to closed states, an then reopen. Thus with repolarization, recovery of d polarizing current could occur through the L-type Ca "window

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

JANUARY AND FOZZARD
(35-37). This mechanism best describes early afterde-
polarizations initiated at action potential plateau volt-
process the 224 JANUARY

(35–37). This mechanism best describes early after

polarizations initiated at action potential plateau volt-

ages, and it does not require Ca^{2+} overload of the cardiac 224

a JANUARY AND

(35-37). This mechanism best describes early after

polarizations initiated at action potential plateau volt-

ages, and it does not require Ca²⁺ overload of the cardiac

cell. A role may still exist (35–37). This mechanism best describes early afterde-
polarizations initiated at action potential plateau volt-
ages, and it does not require Ca^{2+} overload of the cardiac
cell. A role may still exist for intracellular (35–37). This mechanism best describes early afterde-
polarizations initiated at action potential plateau volt-
ages, and it does not require Ca^{2+} overload of the cardiac
cell. A role may still exist for intracellular polarizations initiated at action potential plateau volt-
ages, and it does not require Ca^{2+} overload of the cardiac
cell. A role may still exist for intracellular Ca^{2+} , however,
since it modulates the transmembrane cell. A role may still exist for intracellular Ca^{2+} , however,
since it modulates the transmembrane Ca^{2+} ion gradient,
and together with voltage it regulates the inactivation
kinetics of Ca^{2+} channels. and together with voltage it regulates the inactivation

VII. Relationship of Ca²⁺ and Delayed
Afterdepolarizations to Clinical Arrhythmias

netics of Ca^{2+} channels.

VII. Relationship of Ca^{2+} and Delayed

Afterdepolarizations to Clinical Arrhythmias

It has long been recognized by physicians that toxic

ncentrations of cardiac glycosides cause arrhythmi VII. Relationship of Ca²⁺ and Delayed
Afterdepolarizations to Clinical Arrhythmias
It has long been recognized by physicians that toxic
concentrations of cardiac glycosides cause arrhythmias
that sometimes can be fatal (VII. Relationship of Ca⁻¹ and Delayed
Afterdepolarizations to Clinical Arrhythmias
It has long been recognized by physicians that toxic
concentrations of cardiac glycosides cause arrhythmias
that sometimes can be fatal (Afterdepolarizations to Clinical Arrhythmias
It has long been recognized by physicians that toxiconcentrations of cardiac glycosides cause arrhythmia
that sometimes can be fatal (for review see ref. 75). Usin
extracellular It has long been recognized by physicians that toxic
concentrations of cardiac glycosides cause arrhythmias
that sometimes can be fatal (for review see ref. 75). Using
extracellular recording techniques in isolated tissue concentrations of cardiac glycosides cause arrhythmias
that sometimes can be fatal (for review see ref. 75). Using
extracellular recording techniques in isolated tissue prep-
in
arations, early investigators (6) introduce that sometimes can be fatal (for review see ref. 75). Usin
extracellular recording techniques in isolated tissue prep
arations, early investigators (6) introduced the idea tha
an oscillatory electrical event was triggered extracellular recording techniques in isolated tissue preparations, early investigators (6) introduced the idea that
an oscillatory electrical event was triggered by the action
potential and might cause arrhythmias. Subseq arations, early investigators (6) introduced the idea that
an oscillatory electrical event was triggered by the action
potential and might cause arrhythmias. Subsequent stud-
ies showed that toxic concentrations of card an oscillatory electrical event was triggered by the action
potential and might cause arrhythmias. Subsequent stud-
ies showed that toxic concentrations of cardiac glycosides
led to altered ventricular excitability (for ex potential and might cause arrhythmias. Subsequent studies showed that toxic concentrations of cardiac glycosides
led to altered ventricular excitability (for example, see
ref. 56) and caused an overdrive-dependent accelera ies showed that toxic concentrations of cardiac glycosides
led to altered ventricular excitability (for example, see
ref. 56) and caused an overdrive-dependent acceleration
in ventricular pacemaker rate (for example, see led to altered ventricular excitability (for example, see
ref. 56) and caused an overdrive-dependent acceleration
in ventricular pacemaker rate (for example, see ref. 87).
This set the stage for the present method of prov ref. 56) and caused an overdrive-dependent acceleration
in ventricular pacemaker rate (for example, see ref. 87).
This set the stage for the present method of provoking
delayed afterdepolarizations in isolated tissue by u in ventricular pacemaker rate (for example, see ref. 87).
This set the stage for the present method of provoking
delayed afterdepolarizations in isolated tissue by using
rapid pacing combined with exposure of the tissue t This set the stage for the present method of provoking
delayed afterdepolarizations in isolated tissue by using
rapid pacing combined with exposure of the tissue to
high levels of cardiotonic steroids, catecholamines, or
 delayed afterdepolarizations in isolated tissue by using
rapid pacing combined with exposure of the tissue to
high levels of cardiotonic steroids, catecholamines, or
other interventions that promote Ca^{2+} overload. The
 rapid pacing combined with exposure of the tissue to
high levels of cardiotonic steroids, catecholamines, or
other interventions that promote Ca^{2+} overload. The
ability to generate delayed afterdepolarizations under
la high levels of cardiotonic steroids, catecholamines, or
other interventions that promote Ca^{2+} overload. The
ability to generate delayed afterdepolarizations under
laboratory conditions that resembled clinical states su other interventions that promote Ca^{2+} overload. The ability to generate delayed afterdepolarizations under laboratory conditions that resembled clinical states supported the idea that delayed afterdepolarizations could arrhythmias.

laboratory conditions that resembled clinical states supported the idea that delayed afterdepolarizations could
be an important mechanism underlying some cardiac
arrhythmias.
Evidence supporting a role for delayed afterdep arrhythmias.
Evidence supporting a role for delayed afterdepolarizations in myocardial ischemia can be found. Triggered
rhythms have been reported in association with delayed
afterdepolarizations in canine endocardial tiss Evidence supporting a role for delayed afterdepolarizations in myocardial ischemia can be found. Triggered rhythms have been reported in association with delayed afterdepolarizations in canine endocardial tissue obtained f zations in myocardial ischemia can be found. Triggered

rhythms have been reported in association with delayed

afterdepolarizations in canine endocardial tissue oblights of vent

tained from 1-day-old myocardial infarcti rhythms have been reported in association with delayed
afterdepolarizations in canine endocardial tissue ob-
tained from 1-day-old myocardial infarctions (24). En-
hancement of the delayed afterdepolarizations with low
co afterdepolarizations in canine endocardial tissue obtained from 1-day-old myocardial infarctions (24). Enhancement of the delayed afterdepolarizations with low econcentrations of cardiac glycosides has been suggested as a tained from 1-day-old myocardial infarctions (24) . Enhancement of the delayed afterdepolarizations with low
concentrations of cardiac glycosides has been suggested with
as a basis for the potentially deleterious effects hancement of the delayed afterdepolarizations with
concentrations of cardiac glycosides has been sugges
as a basis for the potentially deleterious effects of card
glycosides in acute myocardial infarction (32). Studie
chro concentrations of cardiac glycosides has been suggested
as a basis for the potentially deleterious effects of cardiac
glycosides in acute myocardial infarction (32). Studies in
chronically and recently infarcted tissue usi as a basis for the potentially deleterious effects of cardiac glycosides in acute myocardial infarction (32). Studies in chronically and recently infarcted tissue using ion-selective microelectrodes (20, 47) have shown de glycosides in acute myocardial infarction (32). Studies in
chronically and recently infarcted tissue using ion-selec-
tive microelectrodes (20, 47) have shown depolarization arrh
of the cell membrane and elevation of intr chronically and recently infarcted tissue using ion-selec-
tive microelectrodes (20, 47) have shown depolarization
of the cell membrane and elevation of intracellular Na⁺,
both of which could promote Ca^{2+} loading of tive microelectrodes $(20, 47)$ have shown depolarization of the cell membrane and elevation of intracellular Ne both of which could promote Ca^{2+} loading of the cells. isolated tissues, both induction and suppression o of the cell membrane and elevation of intracellular Na⁺, from
both of which could promote Ca^{2+} loading of the cells. In
isolated tissues, both induction and suppression of de-
flayed afterdepolarizations have been ob both of which could promote Ca^{2+} loading of the cells.
isolated tissues, both induction and suppression of c
layed afterdepolarizations have been observed in experimental ischemia-reperfusion models (14, 29, 33, 57), a isolated tissues, both induction and suppression of delayed afterdepolarizations have been observed in exper-
imental ischemia-reperfusion models $(14, 29, 33, 57)$, and zavidence exists supporting Ca^{2+} overload as the layed afterdepolarizations have been observed in e
imental ischemia-reperfusion models $(14, 29, 33, 57)$
evidence exists supporting Ca^{2+} overload as the u
lying mechanism. Finally, electrophysiologically a
toxic ische imental ischemia-reperfusion models $(14, 29, 33, 57)$, arevidence exists supporting Ca^{2+} overload as the undelying mechanism. Finally, electrophysiologically activations it toxic ischemic metabolites (i.e., lysophosph evidence exists supporting Ca^{2+} overload as the under-
lying mechanism. Finally, electrophysiologically active
toxic ischemic metabolites (i.e., lysophosphatidylcholine,
etc.) have been reported to provoke afterdepolar ing mechanism. Finally, electrophysiologically active after the since it are in the case of the case of the calculation is calculated the capacity in isolated cardiac tissue $(3, 68)$. In the for Ca²⁺ overload and Ca²⁺

toxic ischemic metabolites (i.e., lysophosphatidylcholine,
etc.) have been reported to provoke afterdepolarizations
and triggered activity in isolated cardiac tissue (3, 68).
A role for Ca²⁺ overload and Ca²⁺-dependent etc.) have been reported to provoke afterdepolarizations car
and triggered activity in isolated cardiac tissue $(3, 68)$. pro
A role for Ca^{2+} overload and Ca^{2+} -dependent ionic rap
currents in both the *initiation* a and triggered activity in isolated cardiac tissue $(3, 68)$.
A role for Ca^{2+} overload and Ca^{2+} -dependent ionicurrents in both the *initiation* and *maintenance* of ventricular fibrillation has been proposed by Clusi

o FOZZARD
that its maintenance was mediated by the same cellular
process that gave rise to the initiation of afterdepolariprocess that gave rise to the initiation of afterdepolential system in the initiation of afterdepolarions and abnormal automaticity. This hypothesis POZZARD

that its maintenance was mediated by the same cellular

process that gave rise to the initiation of afterdepolari-

zations and abnormal automaticity. This hypothesis pro-

vided a mechanism for the reported benef that its maintenance was mediated by the same cellular
process that gave rise to the initiation of afterdepolari-
zations and abnormal automaticity. This hypothesis pro-
vided a mechanism for the reported beneficial effect that its maintenance was mediated by the same cellula
process that gave rise to the initiation of afterdepolar
zations and abnormal automaticity. This hypothesis pre
vided a mechanism for the reported beneficial effects process that gave rise to the initiation of afterdepolarizations and abnormal automaticity. This hypothesis provided a mechanism for the reported beneficial effects of Ca^{2+} channel blockers in experimental ventricular zations and abnormal automaticity. This hypothesis provided a mechanism for the reported beneficial effects of Ca^{2+} channel blockers in experimental ventricular fibrillation as well as for deleterious effects of β -a vided a mechanism for the reported beneficial effects of Ca^{2+} channel blockers in experimental ventricular fibrillation as well as for deleterious effects of β -adrenergic receptor agonists. Findings supportive of th Ca²⁺ channel blockers in experimental ventricular fibrillation as well as for deleterious effects of β -adrenergic receptor agonists. Findings supportive of this hypothesis were reported recently by Merillat et al. (6 lation as well as for deleterious effects of β -adrenergic
receptor agonists. Findings supportive of this hypothesis
were reported recently by Merillat et al. (63). They
provoked ventricular fibrillation in rabbit heart receptor agonists. Findings supportive of this hypothesis
were reported recently by Merillat et al. (63). They
provoked ventricular fibrillation in rabbit hearts loaded
with Ca^{2+} by removal of $[K]_0$ or exposure to oua were reported recently by Merillat et al. (63). They
provoked ventricular fibrillation in rabbit hearts loaded
with Ca²⁺ by removal of $[K]_0$ or exposure to ouabain.
Subsequent lowering of extracellular Ca²⁺ to 80 μ provoked ventricular fibrillation in rabbit hearts loaded
with Ca^{2+} by removal of $[K]_0$ or exposure to ouabain.
Subsequent lowering of extracellular Ca^{2+} to 80 μ M was
shown to abolish the ventricular fibrillatio with Ca²⁺ by removal of $[K]_0$ or exposure to ouabain.
Subsequent lowering of extracellular Ca²⁺ to 80 μ M was
shown to abolish the ventricular fibrillation. They con-
cluded that Ca²⁺ overload caused ventricular Subsequent lowering of extracellular Ca²⁺ to 80 μ M was shown to abolish the ventricular fibrillation. They concluded that Ca²⁺ overload caused ventricular fibrillation in their model, which ceased when Ca²⁺ overl cluded that Ca²⁺ overload caused ventricular fibrillati
in their model, which ceased when Ca²⁺ overload w
reversed. Kusuoka et al. (48) studied perfused fer-
hearts loaded with Ca²⁺ by exposure to strophanthic
and a in their model, which ceased when Ca^{2+} overload was
reversed. Kusuoka et al. (48) studied perfused ferret
hearts loaded with Ca^{2+} by exposure to strophanthid
and also showed the development of ventricular fibrilla-
 reversed. Kusuoka et al. (48) studied perfused ferret hearts loaded with Ca^{2+} by exposure to strophanthidin and also showed the development of ventricular fibrillation and an associated pressure oscillation thought t hearts loaded with Ca^{2+} by exposure to strophanthic and also showed the development of ventricular fibril
tion and an associated pressure oscillation thought
reflect contractile asynchrony. The addition of ryanodi
to t and also showed the development of ventricular fibrillation and an associated pressure oscillation thought to reflect contractile asynchrony. The addition of ryanodine to the perfusate rapidly eliminated the pressure oscil tion and an associated pressure oscillation thought to
reflect contractile asynchrony. The addition of ryanodine
to the perfusate rapidly eliminated the pressure oscilla-
tions, but failed to stop the ventricular fibrillat reflect contractile asynchrony. The addition of ryanod
to the perfusate rapidly eliminated the pressure osci
tions, but failed to stop the ventricular fibrillation. T
concluded that the ventricular fibrillation they stud
 to the perfusate rapidly eliminated the pressure oscillations, but failed to stop the ventricular fibrillation. They concluded that the ventricular fibrillation they studied was not maintained by a primary oscillation of concluded that the ventricular fibrillation they studied
was not maintained by a primary oscillation of intracelconcluded that the ventricular fibrillation they studied
was not maintained by a primary oscillation of intracel-
lular Ca²⁺, and they suggested that other arrhythmogenic
mechanisms, such as reentry or abnormal automati was not maintained by a primary oscillation of intracel-
lular Ca²⁺, and they suggested that other arrhythmogenic
mechanisms, such as reentry or abnormal automaticity,
might sustain the arrhythmia. These results, howeve mechanisms, such as reentry or abnormal automaticity,
might sustain the arrhythmia. These results, however,
did not exclude a role for mechanisms dependent on Ca²⁺
overload in the initiation of ventricular fibrillation. might sustain the arrhythmia. These results, however,
did not exclude a role for mechanisms dependent on Ca^{2+}
overload in the initiation of ventricular fibrillation. Com-
parison of these recent reports is difficult, i might sustain the arrhythmia. These results, however
did not exclude a role for mechanisms dependent on Ca^2
overload in the initiation of ventricular fibrillation. Com
parison of these recent reports is difficult, in pa did not exclude a role for mechanisms dependent on Ca^{2+}
overload in the initiation of ventricular fibrillation. Com-
parison of these recent reports is difficult, in part because
of differences between the experimental overload in the initiation of ventricular fibrillation. Comparison of these recent reports is difficult, in part because of differences between the experimental models and techniques. Further experimental insight is neede parison of these recent reports is difficult,
of differences between the experimental m
niques. Further experimental insight is nee
role of Ca^{2+} overload in the initiation and
of ventricular fibrillation can be defined differences between the experimental models and
ques. Further experimental insight is needed befole of Ca²⁺ overload in the initiation and mainte
ventricular fibrillation can be defined.
It has yet to be proved that dela

A role for Ca²⁺ overload and Ca²⁺-dependent ionic rapid pacing, the relationship of the escape interval to currents in both the *initiation* and *maintenance* of ven-
tricular fibrillation has been proposed by Clusin miques. Further experimental insight is needed before the role of Ca^{2+} overload in the initiation and maintenance of ventricular fibrillation can be defined.
It has yet to be proved that delayed afterdepolarizations ca role of Ca^{2+} overload in the initiation and maintenance
of ventricular fibrillation can be defined.
It has yet to be proved that delayed afterdepolariza-
tions cause clinical arrhythmias. The majority of clinical
evide of ventricular fibrillation can be defined.
It has yet to be proved that delayed afterdepolariza-
tions cause clinical arrhythmias. The majority of clinical
evidence derives from the extrapolation of data obtained
with exp It has yet to be proved that delayed afterdepolariza-
tions cause clinical arrhythmias. The majority of clinical
evidence derives from the extrapolation of data obtained
with experimental pacing protocols used to produce d tions cause clinical arrhythmias. The majority of clinical
evidence derives from the extrapolation of data obtained
with experimental pacing protocols used to produce de-
layed afterdepolarizations and initiate spontaneous evidence derives from the extrapolation of data obtained
with experimental pacing protocols used to produce de-
layed afterdepolarizations and initiate spontaneous
rhythms in isolated tissue. Certain clinical criteria have with experimental pacing protocols used to produce d
layed afterdepolarizations and initiate spontaneor
rhythms in isolated tissue. Certain clinical criteria have
been developed that may be useful in differentiatio
arrhyth layed afterdepolarizations and initiate spontaned
rhythms in isolated tissue. Certain clinical criteria habeen developed that may be useful in differentiation
arrhythmias initiated by delayed afterdepolarization
from those rhythms in isolated tissue. Certain clinical criteria have
been developed that may be useful in differentiating
arrhythmias initiated by delayed afterdepolarizations
from those initiated by other arrhythmogenic mecha-
nis been developed that may be useful in differentiating
arrhythmias initiated by delayed afterdepolarizations
from those initiated by other arrhythmogenic mecha-
nisms (58, 70, 86). The major differentiation is from
reentry, from those initiated by other arrhythmogenic mechanisms (58, 70, 86). The major differentiation is from reentry, since abnormal automaticity is generally not included as a triggered rhythm, and early afterdepolarinisms (58, 70, 86). The major differentiation is from nisms (58, 70, 86). The major differentiation is from
reentry, since abnormal automaticity is generally not
included as a triggered rhythm, and early afterdepolari-
zations are bradycardia dependent. The clinical criteria
 reentry, since abnormal automaticity is generally not
included as a triggered rhythm, and early afterdepolari-
zations are bradycardia dependent. The clinical criteria
suggested that cardiac arrhythmias induced by delayed
 included as a triggered rhythm, and early afterdepolarizations are bradycardia dependent. The clinical criteria
suggested that cardiac arrhythmias induced by delayed
afterdepolarizations should include the characteristics
 suggested that cardiac arrhythmias induced by delayed
afterdepolarizations should include the characteristics
that the rhythm is triggered and how this occurs (i.e.,
cardiac glycoside toxicity, catecholamines, etc.), its r suggested that cardiac arrhythmias induced by delayed
afterdepolarizations should include the characteristics
that the rhythm is triggered and how this occurs (i.e.,
cardiac glycoside toxicity, catecholamines, etc.), its r afterdepolarizations should include the characteristics
that the rhythm is triggered and how this occurs (i.e.,
cardiac glycoside toxicity, catecholamines, etc.), its re-
producibility and probability of enhancement with p that the rhythm is triggered and how this occurs (i.e., cardiac glycoside toxicity, catecholamines, etc.), its reproducibility and probability of enhancement with prior rapid pacing, the relationship of the escape interval cardiac glycoside toxicity, catecholamines, etc.), its reproducibility and probability of enhancement with prior
rapid pacing, the relationship of the escape interval to
the preceding dominant cycle length or pacing freque producibility and probability of enhancement with prior
rapid pacing, the relationship of the escape interval to
the preceding dominant cycle length or pacing frequency,
and the characteristics and reproducibility of arrhy rapid pacing, the relationship of the escape interval to
the preceding dominant cycle length or pacing frequency,
and the characteristics and reproducibility of arrhythmia
termination by single impulses and overdrive pacin

REVIEW

PHARMACOLOGI

spet

 $\mathbb O$

DELAYED AFTERDEPOLARIZ
ful criteria for defining underlying cellular mechanisms
(58), the unequivocal separation of arrhythmogenic DELAYED AFTERDEPOLARI

ful criteria for defining underlying cellular mechanisms

(58), the unequivocal separation of arrhythmogenic

mechanisms by these clinical criteria frequently is not DELAYED AFTERDEPOLARIZA
ful criteria for defining underlying cellular mechanisms
(58), the unequivocal separation of arrhythmogenic
mechanisms by these clinical criteria frequently is not
possible, and recent studies (38) ful criteria for defining underlying cellular mechanism (58), the unequivocal separation of arrhythmogeni
mechanisms by these clinical criteria frequently is no
possible, and recent studies (38) showing that the char
acter ful criteria for defining underlying cellular mechanisms lular mechanisms at the clinical level is complex, and it (58), the unequivocal separation of arrhythmogenic is likely to require new drugs that are highly selective mechanisms by these clinical criteria frequently is not mechanisms by these clinical criteria frequently is no possible, and recent studies (38) showing that the chand
acteristics of delayed afterdepolarizations are not the same in different parts of the heart may further confu possible, and recent studies (38) showing that the chacteristics of delayed afterdepolarizations are not same in different parts of the heart may further conf the interpretation of clinical criteria. At this point, st ies same in different parts of the heart may further confuse
the interpretation of clinical criteria. At this point, stud-
ies utilizing surface and invasive electrophysiological
techniques indicate that the strongest evidenc same in different parts of the heart may further confus
the interpretation of clinical criteria. At this point, stud
ies utilizing surface and invasive electrophysiologics
techniques indicate that the strongest evidence fo the interpretation of clinical criteria. At this point, studies utilizing surface and invasive electrophysiological 2. A techniques indicate that the strongest evidence for a role of delayed afterdepolarizations is in acce tional rhythms in digitalis toxicity (71), and possibly in some forms of ventricula tachycardia (see refs. 8, 58, and 86). delayed afterdepolarizations is in accelerated junc-

onal rhythms in digitalis toxicity (71), and possibly in

me forms of ventricula tachycardia (see refs. 8, 58, and

).

Direct recordings from the endocardial or epicar

tional rhythms in digitalis toxicity (71), and possibly
some forms of ventricula tachycardia (see refs. 8, 58, a
86).
Direct recordings from the endocardial or epicard
surfaces of the heart permit the recording of the mon
 some forms of ventricula tachycardia (see refs. 8, 58, and
86).
Direct recordings from the endocardial or epicardial
surfaces of the heart permit the recording of the mono-
phasic action potential and are an additional app 86). Direct recordings from the endocardial or epicardia
surfaces of the heart permit the recording of the mono
phasic action potential and are an additional approact
to studying the role of delayed afterdepolarizations. A Direct recordings from the endocardial or epicardial
surfaces of the heart permit the recording of the mono-
phasic action potential and are an additional approach
to studying the role of delayed afterdepolarizations. Al-
 phasic action potential and are an additional approach
to studying the role of delayed afterdepolarizations. Al-
though the theoretical basis for these contact recordings
is incompletely explained, experimental validation phasic action potential and are an additional approach $\frac{6.1}{7.1}$ though the theoretical basis for these contact recordings is incompletely explained, experimental validation suggests that the scaled monophasic action to studying the role of delayed afterdepolarizations. A
though the theoretical basis for these contact recordin
is incompletely explained, experimental validation su
gests that the scaled monophasic action potential is
rea though the theoretical basis for these contact recordings
is incompletely explained, experimental validation suggests that the scaled monophasic action potential is a
reasonable approximation of the directly recorded trans is incompletely explained, experimental validation
gests that the scaled monophasic action potential
reasonable approximation of the directly recorded to
membrane action potential (30, 53). Furthermore,
technique may permi gests that the scaled monophasic action potential is
reasonable approximation of the directly recorded tran
membrane action potential (30, 53). Furthermore, the
dechnique may permit the identification of afterdepolar
izati reasonable approximation of the directly recorded tran
membrane action potential (30, 53). Furthermore, the
technique may permit the identification of afterdepola
izations in vivo (see ref. 53), and the approach of recor
i membrane action potential (30, 53). Furthermore, this
technique may permit the identification of afterdepolar-
izations in vivo (see ref. 53), and the approach of record-
ing the monophasic action potential seems to be a p technique may permit the identification of afterdepolarizations in vivo (see ref. 53), and the approach of recording the monophasic action potential seems to be a promising new methodology. While valuable, these types of izations in vivo (see ref. 53), and the approach of recording the monophasic action potential seems to be a promising new methodology. While valuable, these types of recordings potentially are limited by their focal natur ing the monophasic action potential seems to be a promising new methodology. While valuable, these types of recordings potentially are limited by their focal nature and by complexities arising from the "field of view" of ising new methodology. While valuable, these types
recordings potentially are limited by their focal natural
and by complexities arising from the "field of view"
the contact electrode (see ref. 52). Another approach
the id recordings potentially are limited by their focal nature
and by complexities arising from the "field of view" of
the contact electrode (see ref. 52). Another approach to
the identification of underlying arrhythmogenic mec and by complexities arising from the "field of view"
the contact electrode (see ref. 52). Another approach
the identification of underlying arrhythmogenic mech
nisms in the pattern of excitability as defined by the
strengt the contact electrode (see ref. 52). Another approache identification of underlying arrhythmogenic me
nisms in the pattern of excitability as defined by
strength-interval relationship. Intracellular and ex-
cellular stimul the identification of underlying arrhythmogenic mechanisms in the pattern of excitability as defined by the strength-interval relationship. Intracellular and extracellular stimulation techniques have shown characteristic b nisms in the pattern of excitability as defined by the strength-interval relationship. Intracellular and extracellular stimulation techniques have shown characteristic biphasic changes in excitability in association with d strength-interval relationship. Intracellular and extra-
cellular stimulation techniques have shown characteris-
tic biphasic changes in excitability in association with
delayed afterdepolarizations, and they may be a mar cellular stimulation techniques have shown characteristic biphasic changes in excitability in association with delayed afterdepolarizations, and they may be a marker for their presence (73, 77). Finally, the direct imagin tic biphasic changes
delayed afterdepolar
for their presence (75)
intracellular Ca^{2+} is
powerful new tool.
In addition to t layed afterdepolarizations, and they may be a marker
r their presence $(73, 77)$. Finally, the direct imaging of
tracellular Ca^{2+} in the intact heart may provide a
werful new tool.
In addition to the direct initiation

for their presence (73, 77). Finally, the direct imaging of
intracellular Ca^{2+} in the intact heart may provide a
powerful new tool.
In addition to the direct initiation of abnormal
rhythms by the delayed afterdepolariz intracellular Ca^{2+} in the intact heart may provide a 18 powerful new tool.
In addition to the direct initiation of abnormal 18 rhythms by the delayed afterdepolarization reaching threshold voltage, other possible arrhy powerful new tool.

In addition to the direct initiation of abnormal 19. In

rhythms by the delayed afterdepolarization reaching

threshold voltage, other possible arrhythmogenic roles 20. In

exist for them. Delayed after In addition to the direct initiation of abnormal 19.

rhythms by the delayed afterdepolarization reaching

threshold voltage, other possible arrhythmogenic roles 20.

exist for them. Delayed afterdepolarizations failing t rhythms by the delayed afterdepolarization reaching
threshold voltage, other possible arrhythmogenic roles 20.1
exist for them. Delayed afterdepolarizations failing to
reach threshold voltage themselves are associated w threshold voltage, other possible arrhythmogenic roles 20.1
exist for them. Delayed afterdepolarizations failing to
reach threshold voltage themselves are associated with
substantial changes in current threshold (77). I exist for them. Delayed afterdepolarizations failing to reach threshold voltage themselves are associated with substantial changes in current threshold (77). It has also long been known that delayed afterdepolarizations ca reach threshold voltage themselves are associated with
substantial changes in current threshold (77). It has also $^{21.}$ E
long been known that delayed afterdepolarizations can
alter conduction velocity and may produce c substantial changes in current threshold (77). It has also
long been known that delayed afterdepolarizations can
alter conduction velocity and may produce conduction
block (67, 73), presumably as a result of a change in
ex long been known that delayed afterdepolarizations can
alter conduction velocity and may produce conduction
block (67, 73), presumably as a result of a change in
excitability (19). These changes could provide the con-
ditio alter conduction velocity and may produce conduction 22 .
block (67, 73), presumably as a result of a change in 23 .
excitability (19). These changes could provide the con-
ditions necessary to establish conduction bloc block (67, 73), presumably as a result of a change
excitability (19). These changes could provide the c
ditions necessary to establish conduction block such t
reentrant rhythms could be initiated. In this way
afterdepolari excitability (19). These changes could provide the conditions necessary to establish conduction block such the reentrant rhythms could be initiated. In this way the afterdepolarization would serve to initiate the tachya rh ditions necessary to establish conduction block such that
reentrant rhythms could be initiated. In this way the
afterdepolarization would serve to initiate the tachyar-
rhythmia, but would not be required for its maintenan reentrant rhythms could be initiated. In this way the afterdepolarization would serve to initiate the tachyar-
rhythmia, but would not be required for its maintenance.
Another possible role for delayed afterdepolarization afterdepolarization would serve to initiate the tachyar-
rhythmia, but would not be required for its maintenance.
Another possible role for delayed afterdepolarizations is
that the associated time-dependent changes in dias rhythmia, but would not be required for its maintenance.
Another possible role for delayed afterdepolarizations is
that the associated time-dependent changes in diastolic
excitability also could contribute to rate-dependen

TIONS IN HEART MUSCLE
lular mechanisms at the clinical level is complex, and it
is likely to require new drugs that are highly selective for TIONS IN HEART MUSCLE 225

lular mechanisms at the clinical level is complex, and it

is likely to require new drugs that are highly selective for

specific mechanisms and more accurate and detailed in TIONS IN HEART MUSCLE

lular mechanisms at the clinical level is complex, and it

is likely to require new drugs that are highly selective for

specific mechanisms and more accurate and detailed in

vivo recording techniqu vivo in the metallical lines.

is likely to require new drugs that

specific mechanisms and more ac

vivo recording techniques.

REFERENCES

- The recording techniques.

REFERENCES

REFERENCES

1. ALLEN, D. G., EISNER, D. A., AND ORCHARD, C. H.: Characterization of

oscillations of intracellular calcium concentration in ferret ventricular

muscle. J. Physiol. (Lo
- oscillations of intracellular calcium concentration in ferret ventricum.

2. ARLOCK, P., AND KATZUNG, B. G.: Effects of sodium substitutes on transiem

inward current and tension in guinea-pig and ferret papillary muscle

- inward current and tension in guinea-pig and ferret papillary muscle. J.

Physiol. (Lond.) 360: 105-120, 1985.

3. ARNSDORF, M. F., AND SAWICKI, G. J.: The effects of lysophosphatidylcho-

line, a toxic metabolite of ische
- EXERT MORE, M. F., AND SAWICKI, G. J.: The effects of lysophosphatidylcho-
iline, a toxic metabolite of ischemia, on the components of cardiac excita-
bility in sheep Purkinje fibers. Circ. Res. 49: 16–30, 1981.
RECENAS-RU 5. Boyer R. R., AND WIER, W. G.: Voltage dependence of intracellular (Ca²⁺), transients in guinea pig ventricular myocytes. Circ. Res. 61: 148-1567, I., AND WIER, W. G.: Voltage dependence of intracellular (Ca²⁺), tran
- I. BARCENAS-RUIZ, L., AND WIER, W. G.: Voltage dependence of intracellular [Ca²⁺], transients in guinea pig ventricular myocytes. Circ. Res. 61: 148-
154, 1987.
5. BOYETTE, M. R., KIRBY, M. S., AND ORCHARD, C. H.: Beat-t 138: **138:** 273-282, 1943.
 138: 273-282, 1943. **I.**, Noble, N. S., AND ORCHARD, C. H.: Beat-to-beat changes

in calcium current (i_{Ca}) during calcium overload in mammalian ventricular

myocytes (abstract). J. Physiol.
-
- myocytes (abstract). J. Physiol. (Lond.) 391:44P, 1987.

6. BozLER, E.: The initiation of impulses in cardiac muscle. Am. J. Physiol.

188: 273-282, 1943.

7. BROWN, H. F., NOBLE, D., NOBLE, S. J., AND TAUPIGNON, A. I.: Re
-
- ver the transient inward current and slow inward currents in the sino-
atrial node of the rabbit. J. Physiol. (Lond.) 370: 299-315, 1986.
8. BRUGADA, P., AND WELLENS, H. J. J.: The role of triggered activity in clinical
ve S. BRUGADA, P., AND WELLENS, H. J. J.: The role of triggered activity in clinical
ventricular arrhythmias. Pace 7: 260-271, 1984.
9. CALLEWAERT, G., VEREECKE, J., AND CARMELIET. E.: Existence of a calcium-
dependent potas
- NINELL, M. B., AND LEDERER, W. J.: The arrhythmogenic current i_{TT} in the absence of electrogenic sodium-calcium exchange in sheep cardiac Purkinje fibres. J. Physiol. (Lond.) 374: 201–219, 1986.
Physiols in Am. J. A
- H412-H418, 1985.
- 11. CAPOGROSSI, M., AND LAKATTA, E. G.: Frequency modulation and synchronization of spontaneous oscillations in cardiac cells. Am. J. Physiol. 248:

H12-H418, 1985.

12. CLUSIN, W. T., BRISTOW, M. R., KARAGUEUZIAN, H. S., is concours, tany and material material in cardiac cells. Am. J. Physiol. 2

H412–H418, 1985.

USIN, W. T., BRISTOW, M. R., KARAGUEUZIAN, H. S., KATZUNG, B.

AND SCHROEDER, J. S.: Do calcium-dependent ionic currents med

i 12. CLUSIN, W. T., BRISTOW, M. R., KARAGUEUZIAN, H. S., KATZUNG, B. G., AND SCHROEDER, J. S.: Do calcium-dependent ionic currents mediate ischemic ventricular fibrillation? Am. J. Cardiol. 49: 606-612, 1982.
13. CLUSIN, W.
- current in embryonic heart cells: time course and voltage dependence. Am. AMD SCHROEDER, J. S.: Do calcium-dependent ionic currents mediate ischemic ventricular fibrillation? Am. J. Cardiol. 49: 606-612, 1982.
13. CLUSIN, USIN, W. T., FISCHMEISTER, R., AND DEHAAN, R. L.: Caffine-induced
current in embryonic heart cells: time course and voltage dependence. Am.
J. Physiol. 245: H528-H532, 1983.
DETZER, W. A., AND OPIE, L.: Effects of componen
- 14. COETZEE, W. A., AND OPIE, L.: Effects of components of ischemia and metabolic inhibition on delayed afterdepolarizations in guinea pig papillary muscle. Circ. Res. 61: 157-165, 1987.
15. COLQUHOUN, D., NEHER, E., REUTE metabolic inhibition on delayed afterdepolarizations in guinea pig papillary
-
- 16. CRANEFIELD, P. F.: Action potentials, afterpotentials, and arrhythmias. Circ.
Res. 41: 414-423, 1977.
17. DAMIANO, B. P, AND ROSEN, M. R.: Effect of pacing on triggered activity
-
- Nature (Lond.) 294: 752-754, 1981.

16. CRANEFIELD, P. F.: Action potentials, afterpotentials, and arrhythmias. Circ.

17. DAMIANO, B. P., AND ROSEN, M. R.: Effect of pacing on triggered activity

17. DAMIANO, B. P., AND R induced by early afterdepolarizations. Circulation 69: 1013-1025, 1984.

18. DEITMER, J. W., AND ELLIS, D.: The intracellular sodium activity of cardiac

Physiol. (Lond.) 284: 241-259, 1978.

Physiol. (Lond.) 284: 241-259,
- induced by early afterdepolarizations. Circulation 69: 1013-1025, 1984.

18. DETANER, J. W., AND ELLIS, D.: The intracellular sodium activity of cardiac

Purking fibres during inhibition and re-activation of the Na-K pump.
- MINGUEZ, G., AND FOZZARD, H. A.: Influence of extracellular K* concentration on cable properties and excitability of sheep Purkinje fibres. Circ.
Res. 26: 665-574, 1970.
RESDNER, K. P., KLINE, R. P., AND WIT, A. L.: Intrac tration on cable properties and excitability of sheep Purkinje fibres. Circ.

Res. 26: 665-574, 1970.

20. DRESDNER, K. P., KINE, R. P., AND WIT, A. L.: Intracellular K⁺ activity,

intracellular Na⁺ activity, and maxim
- electrogenicity. Am. J. Physiol. Calcium-activated nonselective cation
channel in ventricular cells isolated from adult guinea-pig hearts. J. Phys-
iol. (Lond.) 403: 117-133, 1988.
23. EISNER, D. A., AND LEDENER, W. J.: Na
-
- 22. EISNER, D. A., AND LEDERER, W. J.: Na-Ca exchange: stoichiometry and
electrogenicity. Am. J. Physiol. 2448: C189-C202, 1985.
23. EISNER, D. A., AND VALDEOLMILLOS, M.: A study of intracellular calcium
oscillations in sh
- veillations in sheep cardiac Purkinje fibres measured at the single cell
level. J. Physiol. (Lond.) 372: 539-556, 1986.
24. EL-SHERIF, N., GOUGH, W. B., ZEILER, R. H., AND MEHRA, R.: Triggered
ventricular hythms in 1-day-o
-
- cium transient in a skinned cardiac Purkinje cell. J. Gen. Physiol. 85: 189-246, 1985.
26. FABIATO, A.: Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic Statistical Purking can decir extends can be accoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 247-289, 1985.
27. FABIATO, A.: Stimulated calcium current can both cause calcium loading i
- and trigger calcium release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 247–289, 1985.
ABIATO, A.: Stimulated calcium current can both cause calcium loading in
- 28. FERRIER, G. R.: Digitalis arrhythmias, role of oscillatory afterpotentials.
Prog. Cardiovasc. Dis. 19: 459–474, 1977.
29. FERRIER, G. R., MOFFAT, M. P., AND LUKAS, A.: Possible mechanisms of
- ventricular arrhythmias elicited by ischemia followed by reperfusion: stud-

ies on isolated canine ventricular tissues. Circ. Res. 56: 184-194. 1985. 26. FERRIER, G. R.: Digitalis arrhythmias, role of oscillatory afterpotentials.
 30. FERRIER, G. R., MOFFAT, M. P., AND LUKAS, A.: Possible mechanisms of 55.

ventricular arrhythmias elicited by ischemia followed by repe
- ERRIER, G. K., MOFFAT, M. P., AND LUKAS, A.: POSSIDIO mechanisms of
ventricular arrhythmias elicited by ischemia followed by reperfusion: stud-
iso on isolated canne ventricular tissues. Circ. Res. 56: 184-194, 1985.
LAKAT 31. HAMIR, M., R., BURKHOPP, D., SPURGEON, H., WEISPELT, M. L., AND
LAKATTA, E. G.: In vitro validation of a new cardiac catheter technique for
recording monophasic action potentials. Eur. Heart J. 7: 34–41, 1986.
31. HAMI
- LAKATTA, E. G.: In vitro validation of a new cardiac catheter technique for
recording monophasic action potentials. Eur. Heart J. 7: 34-41, 1986.
31. HAMILL, O. P., MARTY, A., NEHER, E., SAKMANN, B., AND SIGWORTH, F. J.:
I
- 31. HAMILL, O. P., MARTY, A., NEHER, E., SAKMANN, B., AND SIGWORTH, F. J.:

Improved patch-clamp techniques for high-resolution current recording

from cells and cell-free membrane patches. Pflugers Arch. 391: 85-100,

198
- activity in ischemic Purkings fibers by ouabain: a
mechanism of increased susceptibility to digitalis toxicity in myocardial
infarction. J. Am. Coll. Cardiol. 5: 672-679, 1985.
31. HavasHI, H. H., PoNNAMBALAM, C., AND MCDO infarction. J. Am. Coll. Cardiol. 5: 672–679, 1985.

33. HAVASHI, H. H., PONNADALM, C., AND MCDONALD, T. F.: Arrhythmic

activity in reorgenated guinear pig papillary muscles and ventricular cells.

Circ. Res. 61: 124–133,
-
-
- 34. HILL, J. A., JR., CORONADO, R., AND STRAUSS, H. C.: Reconstitution and
characterization of a calcium-activated channel from heart. Circ. Res. 62:
411-415, 1988.
35. HIRANO, Y., AND JANUARY, C. T.: Direct recording of L current in cardiac Purkinje cells (abstract). Biophys. J. in press, 1989.
36. JANUARY, C. T., AND RIDDLE, J. M.: Early afterdepolarizations: mechanism
of induction and block. A role for L-type Ca⁺⁺ current. Circ. Res. in
- afterdepolarizations: induction and block. A role for L-type Ca⁺⁺ current. Circ. Res. in press,
1989.
37. JANUARY, C. T., RIDDLE, J. M., AND SALATA, J. J.: A model for early
afterdepolarizations: induction with the Ca⁺⁺
- NUARY, C. T., RIDDLE, J. M., AND SALATA, J. J.: A model for early afterdepolarizations: induction with the Ca⁺⁺ channel agonist Bay k 8644.
Circ. Res. 62: 563-571, 1988.
HNN80N, N., DANILO, P., JR., WIT, A. L., AND ROSEN activity in atrial fibers of the coronary sinus. Circ. Res. 62: 563-571, 1986.

38. JOHNSON, N., DANILO, P., J.R., Wrr, A. L., AND ROSEN, M. R.: Character

istics of initiation and termination of catecholamine-induced trig
- istics of initiation and termination of catecholamine-induced triggered
activity in atrial fibers of the coronary sinus. Circulation 74: 1168-1179,
RAGUEUZIAN, H. S., AND KATEUNG, B. G.: Relative inotropic and arrhyth-
mog 39. KARAGUEUZIAN, H. S., AND KATZUNG, B. G.: Relative inotropic and arrhyth-
mogenic effects of five cardiac steroids in ventricular myocardium: oscillatory afterpotentials and the role of endogenous catecholamines. J. Pha transient in or and a the relationship in the matricular myocardium: oscillatory afterpotentials and the role of endogenous catecholamines. J. Pharmacol. Exp. Ther. 218: 348-356, 1981.

Incollections in the state of the cu
-
- Latory afterpotentials and the role of endogenous catecholamines. J. Pharmacol. Exp. Ther. 218: 348-356, 1981.
40. KARAGUEUSIAN, H. S., AND KATZUNG, B. G.: Voltage-clamp studies of transient inward current and mechanical o 208, 1978. **42. KASS, R. S., LEDERER, W. J., TSIEN, R. W.**, AND WEINGART, R.: Role of
calcium ions in transient inward currents and aftercontractions induced
by strophanthidin in cardiac Purkinje fibres. J. Physiol. (Lond.
- 208, 1978.

42. KASS, R. S., AND TSIEN, R. W.: Fluctuation in membrane current driven by

intracellular calcium in cardiac Purkinje fibers. Biophys. J. 38: 259–269,

1982.

43. KAS, R. S., TSIEN, R. W., AND WEINGART, R.: I
-
- 1982.

44. KASS, R. S., TSIEN, R. W., AND WEINGART, R.: Ionic basis of transient

inward current induced by strophanthidin in cardiac Purkinje fibres. J.

Physiol. (Lond.) 281: 209-226, 1978.

44. KATZ, A. M., TAKENAKA, H. Exp. Jessies, A. B., Hans, A. M., And Wantchildin in cardiac Purkinje fibres. J.
Physiol. (Lond.) 281: 209-226, 1978.
NTZ, A. M., TAKENAKA, H., AND WATRAS, J.: The sarcoplasmic reticulum.
In The Heart and Cardiovascular Sy Physiol. (Lond.) 281: 209-226, 1978.

44. KATZ, A. M., TAKENAKA, H., AND WATRAS, J.: The sarcoplasmic reticulum.

In The Heart and Cardiovascular System, ed. by H. A. Fozzard, H. Haber,

R. B. Jenninga, A. M. Katz, and H. In The Heart and Cardiovascular System, ed. by H. A. Fozzard, H. Haber,
R. B. Jennings, A. M. Kats, and H. E. Morgan, pp. 731–746, Raven Press,
New York, 1986.
45. KIMURA, J.: Na-Ca exchange and Ca-eensitive non-selective
-
-
- of the guinea-pig (abstract). J. Physiol. (Lond.) in press, 1988.

46. KIMURA, J., SHUNICH, M., AND NOMA, A.: Identification of sodium-calcium

exchange current in single ventricular cells of guinea-pig. J. Physiol.

(Lond
- BURG, R. J.: Regional changes in intracellular potassium and sodium
activity after healing of experimental myocardial infarction in cats. Circ.
Res. 58: 202-208, 1986.
48. Kusuoka, H., Jacobus, W. E., AND MARBAN, E.: Calci consequences in its interpreted myocardial infarction in cats. Circ. Res. 58: 202-208, 1986.

48. KUSUOKA, H., JACOBUS, W. E., AND MARBAN, E.: Calcium oscillation in digitalis-induced ventricular fibrillation: pathogenes r rest. O. S. S. S. S. S. S. S. AND MARBAN, E.: Calcium oscillation in digitalis-induced ventricular fibrillation: pathogenic role and metabolic consequences in isolated ferret hearts. Circ. Res. 62: 609-619, 1988.
KATA, E.
- (Consequences in isolated ferret hearts. Circ. Res. 62: 609-619, 1988.
49. LAKATTA, E. G., AND LAPPE, D. L.: Diastolic scattered light fluctuation, resting force, and twitch force in mammalian cardiac muscle. J. Physiol.
5
- arrhythmogenic steroids of cardiotic scattered light fluctuation, resting force, and twitch force in mammalian cardiac muscle. J. Physiol.
(Lond.) 215: 369-394, 1981.
50. LEDERER, W. J., AND TSIEN, R. W.: Transient inward 1998 Martin College and the Tauker, R. W.: Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibers. J. Physiol. (Lond.) 263: 73-100, 1976.

51. LEE, C. O., AND DAGOSTINO, M.: E
- errhythmogenic effects of cardiotonic steroids in Purkinje fibers. J. Physiol.

(Lond.) 263: 73-100, 1976.

51. LEE, C. O., AND DAGOSTINO, M.: Effect of strophanthidin on intracellular

Na ion activity and twitch tension i (E.C. O., AND DAGOSTINO, M.: Effect of strophanthidin on intracellular Na ion activity and twitch tension in constantly driven canine cardiac Purkinje fibers. Biophys. J. 40: 185-198, 1982.
Purkinje fibers. Biophys. J. 40:
-
- Na ion activity and twitch tension in constantly driven canine cardiac 79. VALDEOMILLOS, M., AND EISNER, D. A.: The effects of ryanodine on calcium-

Purkinje fibers. Gior, Biophys. J. 40: 185-196, 1982.

1. F.: The MAP fi J. F.: The MAP field of view: implications for recording phenomena

(abstract). J. Am. Coll. Cardiol. 9: 253A, 1987.

53. LEVINE, J. H., SPEAR, J. F., GUARNIERI, T., WEISFELDT, M. L., DE LANGEN,

53. LEVINE, J. H., SPEAR, C. D. J., BECKER, L. C., AND MOORE, E. N.: Cesium chloride-induced long
-

the oscillatory current in cardiac Purkinje fibers. J. Cardiovasc. Pharmacol.

- 19:30 POZZARD

8: 906-914, 1986.

8: 906-914, 1986.

55. LIPP, P., AND POTT, L.: Transient inward current in guinea-pig atrial

myocytes reflects a change of sodium-calcium exchange current. J. Physiol. the oscillatory current in cardiac Purkinje fibers. J. Cardiovasc. Pharmacol.
8: 906–914, 1966.
PP, P., AND POTT, L.: Transient inward current in guinea-pig atrial
myocytes reflects a change of sodium-calcium exchange curr the oscillatory current in cardiac Purkinje fibers. J. Cardiovasc. Pharmacol.

8: 906-914, 1986.

55. LuPP, P., AND POTT, L.: Transient inward current in guinea-pig atrial

myocytes reflects a change of sodium-calcium exch 55. LIPP, P., AND POTT, L.: Transient inward current in guinea-pig atrial
myocytes reflects a change of sodium-calcium exchange current. J. Physiol.
(Lond.) 397: 601-630, 1988.
56. LOWN, B.: Electrical stimulation to estim
-
- (Lond.) 397: 601-630, 1988.

56. Lown, B.: Electrical stimulation to estimate the degree of digitalization. Am.

J. Cardiol. 22: 251-259, 1968.

57. Lucas, A., AND FERRIRR, G. R.: Interaction of ischemia and reperfusion wi From the sector of the summation of the sequence of digitalization. Am.
J. Cardiol. 22: 251-259, 1968.
SCAS, A., AND FERRIER, G. R.: Interaction of ischemia and reperfusion with
subtoric concentrations of acetylstrophanthi **18:** 1143-1156, 1986. 57. LUCAS, A., AND **FERRIER**, G. R.: Interaction of ischemia and reperfusion with
subtoxic concentrations of acetylstrophanthidin in isolated cardiac ven-
tricular tissues: effects on mechanisms of arrhythmia. J. Mol. Cell
-
- subtoxic concentrations of acetylstrophanthidin in isolated cardiac ven-
tricular tissues: effects on mechanisms of arrhythmia. J. Mol. Cell. Cardiol.
18: 1143-1156, 1986.
58. MALFATTO, G., ROSEN, T. S., AND ROSEN, M. R.: pecing of triggered atrial and ventricular arrhythmias in the canine heart.
Circulation 77: 1139-1148, 1988.
59. MARBAN, E., ROBINSON, S. W., AND WIER, W. G.: Mechanisms of arrhythmogenic delayed and early afterdepolarizat
- activity in reoxygenated guines pig papillary muscles and ventricular cells.

34. HII. J. A., JR., CORONADO, R., AND STRAUSS, H. C.: Reconstitution and

23. HII. J. A., JR., CORONADO, R., AND STRAUSS, H. C.: Reconstitution **ARBAN, E., ROBINSON, S. W., AND WIER, W. G.: Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle.
J. Clin. Invest. 78: 1185–1192, 1996.
ATSUDA, H., NOMA, A., KURACHI, Y., AND I** mogenic delayed and early afterdepolarizations in ferret ventricular muscle.

C. Clin. Invest. 78: 1185-1192, 1986.

60. MATSUDA, H.: Transient depo-

larization and spontaneous fluctuations in isolated single cells from g **larization and spontaneous fluctuations in isolated single cells from guinea**
pig ventricles. Calcium-mediated membrane potential fluctuations. Circ.
Res. 51: 142-151, 1982.
61. MECHMAN, S., AND POTT, L.: Identification o
	-
	-
	- Res. 51: 142-151, 1982.

	61. MECHMANN, S., AND POTT, L.: Identification of Na-Ca exchange current in

	single cardiac myocytes. Nature (Lond.) 319: 597-599, 1986.

	62. MEHDI, T., AND SACHS, F.: Voltage clamp of isolated car Cabitract). Biophys. J. 21: 165a. 1978.

	63. MERILLAT, J. C., LAKATTA, E. G., SPURGEON, H. A., AND GUARNIERI, T.: Ionic debrillation of the calcium overloaded heart (abstract). J. Am. Coll.

	Cardiol. 9: 127A, 1987.

	64. MU
	-
	-
	- Cardiol. 9: 127A, 1987.

	64. MULLINS, L. J.: The generation of electric currents in cardiac fibers by Na/

	Ca exchange. Am. J. Physiol. 236: C103-C110, 1979.

	65. NOBLE, D.: The surprising heart: a review of recent progres electrophysiology. J. Physiol. (Lond.) 353: 1-50, 1984.

	66. ORCHARD, C. H., EISNER, D. A., AND ALLEN, D. G.: Oscillation of intracellular Ca²⁺ in mammalian cardiac muscle. Nature (Lond.) 304: 735-738, 1983.

	1983.
 67.
	- to conduction velocity in canine Purkinje tissue. Circ. Res. 43: 125-135,
- by strophanthidin in cardiac Purkinje in Strophanthidin in cardiac Purkinje fibres. J. Physiol. (Lond.) 281: 187-

2018, R. S., AND TEIEN, R. W., AND WEINGART, R.: Role of

tannient inward current and aftercontractions ind 1983.

67. PEON, J., FERRIER, G. R., AND MOE, G. K.: The relationship of excitability

to conduction velocity in canine Purkinje tissue. Circ. Res. 43: 125-135,

1978.

68. POGWIZD, S. M., ONUFER, J. R., KRAMER, J. B., SOB 69. POGWIED, S. M., ONUTER, J. K., KRAMER, J. B., SOBEL, B. E., AND COR
P. B.: Induction of delayed afterdepolarizations and triggered activity
canne Purkinje fibers by lysophosphoglycerides. Circ. Res. 59: 416-42
1986.
6
	- F. B.: induction of delayed afterdepolarizations and triggered activity in
canine Purkinje fibers by lysophosphoglycerides. Circ. Res. 59: 416-426,
1986.
69. REEVES, J.: The sarcolemmal sodium-calcium exchange system. In R tion of Calcium Transport across Muscle Membranes, Current Topics in
Membranes and Transport, ed. by A. Shamoo, vol. 25, pp. 77-127, Academic
Press, New York, 1986.
70. ROSEN, M. R.: Is the response to programmed electrica
	-
	- ic of mechanisms for arrhythmias? Circulation 73: (suppl. II): II18-II27,

	1980.

	71. ROSEN, M. R., FISCH, C., HOFFMAN, B. R., DANILO, P., LOVELACE, D. E.,

	AND KNOEREL, S. B.: Can accelerated attroventricular junctional e 71. ROSEN, M. R., FISCH, C., HOFFMAN, B. R., DANILO, P., LOVELACE, D. E.,

	AND KNOEBEL, S. B.: Can accelerated atrioventricular junctional escape

	rhythms be explained by delayed afterdepolarizations? Am. J. Cardiol. 45:

	- **lum calculum channel.** Biophysics and the channel and "Ca²⁺ flux measurements of the cardiac sarcoplasmic reticu-
channel and "Ca²⁺ flux measurements of the cardiac sarcoplasmic reticu-
hum calcium channel. Biophys. J
	- channel and "Ca^{x+} flux measurements of the cardiac sarcoplasmic reticu-
lum calcium channel. Biophys. J. 50: 1009-1014, 1986.
73. SAUNDERS, J. H., FERRIER, G. R., AND MOE, G. K.: Conduction block
associated with transien
	-
	- II. Subsectional gradients in cardiac muscle and their relationship to force development. J. Gen. Physiol. 80: 325-351, 1982.

	75. SMITH, T. W., ANTMAN, E. M., FRIEDMAN, P. L., BLATT, C. M., AND MARSH, J. D.: Digitalis gly
	- 75. SMITH, T. W., ANTMAN, E. M., FRIEDMAN, P. L., BLATT, C. M., AND MARSH,
J. D.: Digitalis glycosides: mechanisms and manifestations of toxicity, part
III. Prog. Cardiovasc. Dis. 27: 21-56, 1984.
76. SUTKO, J. L., AND KEN tials in the two matter areas. The include proposes to potassium-free solutions. Evidence for inhibition of sareo-
plasmic reticulum calcium release. J. Gen. Physiol. 82: 385-404, 1983.
RREK, R. M., AND JANUARY, C. T.: Exc
	-
	- responses to potassium-free solutions. Evidence for inhibition of sarco-
plasmic reticulum calcium release. J. Gen. Physiol. 82: 385-404, 1983.
77. TEREK, R. M., AND JANUARY, C. T.: Excitability and oscillatory afterpoten**induced delayed afterdepolarizations** in atrial cells. Am. J. Physiol. 252: H645-H652, 1987.
 induced sheep cardiac Purkinje fibers. Am. J. Physiol. 252: H645-H652, 1987.
 induced delayed afterdepolarizations in atria T8. TSENG, G., AND WIT, A. L.: Effect of reducing [Na⁺], on catecholemine-
induced delayed afterdepolarizations in atrial cells. Am. J. Physiol. 253:
H115-H125, 1987.
T9. VALDEOMILLOS, M., AND EISNER, D. A.: The effects 78. TSENG, G., AND WIT, A. L.: Effect of reducing [Na⁺]₀ on catecholemine-
induced delayed afterdepolarizations in atrial cells. Am. J. Physiol. 253:
H115-H125, 1987.
79. VALDEOMILLOS, M., AND EISNER, D. A.: The effect
	-
	-
	- cells (abstract). Biophys. J. 41: 176a, 1983.

	31. VASSALLE, M., AND MUGELLI, A.: An oscillatory current in sheep cardiac

	Purkinje fibers. Circ. Res. 48: 618-631, 1981.

	24. WASERSTENDA, J. A., AND FERENER, G. R.: Voltage
	- 80. VAN GINNEKEN, A.: Oscillatory current in aggregates of neonatal rat heart cells (abstract). Biophys. J. 41: 176a, 1983.
81. VASSALLE, M., AND MUGELLI, A.: An oscillatory current in sheep cardiac Purkinje fibers. Circ. H646-H653, 1981. 82. WASSERSTROM, J. A., AND FERRIER, G. R.: Voltage dependence of digitalis
	-

PHARM
REV

spet

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

- **DELAYED AFTERDEPOLARIZATIO**

between intracellular sodium and twitch tension in sheep cardiac Purkinje

strands exposed to cardiac glycosides. Cir. Res. 52: 697-705, 1983.

HER, W. G., AND HESS, P.: Excitation-contractio
- nonise analysis of analysis of analysis of analysis of analysis of an alb. 1984.
 Natle Science Science Science Science Act Act Academy Purce 1.5, 1984.
 Sc. WIER, W. G., KORT, A. A., STERN, M. D., LAKATTA, E. G., AND M
- 86. **WIT,** A. L., **AND ROSEN,** M. R.: Afterdepolarizations and triggered activity. *In* **The Heart and Cardiovascular System,** ad. by H. A. Fozzard, H. Haber, R. B. IN HEART MUSCLE

R. A. L., AND ROSEN, M. R.: Afterdepolarizations and triggered activity.

In The Heart and Cardiovascular System, ed. by H. A. Fozzard, H. Haber,

R. B. Jennings, A. M. Katz, and H. E. Morgan, pp. 14 Press, **New** York, 1986. 86. WITTENERG, AND ROSEN, M. R.: Afterdepolarizations and triggered activity.

In The Heart and Cardiovascular System, ed. by H. A. Fozzard, H. Haber,

R. B. Jennings, A. M. Katz, and H. E. Morgan, pp. 1449–1490, Raven

Pr
- 87. WITTENBERG, S. M., STREULI, F., AND KLOCKE, F. J.: Acceleration of ventricular pacemakers by transient increases in heart rate in dogs during ouabain administration. Circ. Res. 26: 705-716, 1970.
88. YELLEN, G.: Single
- blastoma. Nature (Lond.) 296: 357-359, 1982.

Ospet